1. Features

- 80C51 core
 - 12 or 6 clocks per instruction (X1 and X2 modes)
 - 256 bytes scratchpad RAM
 - Dual Data Pointer
 - Two 16-bit timer/counters: T0 and T1
- T83C5121 with 16 Kbytes Mask ROM
- T85C5121 with 16 Kbytes Code RAM
- T89C5121 with 16Kbytes Code RAM and 16Kbytes EEPROM
- On-chip eXpanded RAM (XRAM): 256 bytes
- Versatile host serial interface
 - Full duplex Enhanced UART (EUART) with dedicated baud rate generator (BRG): most standard speeds up to 230 kbits/s at 7.36 MHz.
 - Output enable input
 - Multiple logic level shifters options (1.8V to Vcc)
- Automatic level shifter option
- Multi-protocol Smart Card Interface
 - Certified with dedicated firmware according to ISO 7816, EMV'96, GIE-CB, GSM and WHQL standards
 - Asynchronous protocols T=0 and T=1, with direct and inverse modes
 - Baud Rate Generator supporting all ISO7816 speeds up to D=32 / F=372.
 - Parity error detection and indication
 - Automatic character repetition on parity errors
 - Programmable Time-out detection
 - Card clock stop high or low for card power-down mode
 - Support synchronous card with C4 and C8 programmable I/Os
 - Card detection and automatic de-activation sequence
 - Step-up/down converter with programmable voltage output: 5V, 3V (+/-8% at 60mA) and 1.8V (+/-8% at 20mA)
 - Direct connection to Smart Card terminals: Short circuit current limitation Logic level shifters 4 kV ESD protection (MIL/STD 833 Class 3)
- Alternate Card support with CLK, IO and RST according to GSM 3V standard
- 2x I/O Ports: 6 I/O Port1 and 8 I/O Port3
- 2x LED outputs with programmable current sources: 2-4-10 mA
- Hardware Watchdog
- Reset output includes:
 - Hardware Watchdog Reset
 - Power-On Reset (POR)
 - Power-Fail Detector (PFD)
- 4-Level Priority Interrupt System with 7 sources.
- 0 to 16 MHz on-chip oscillator with clock prescaler
- Idle and Power-down modes
- Voltage operation: 2.85 to 5.4V
- Low power consumption:
 - 8 mA operating current (at 3.0V and 3.68 MHz X2)
 - 150 mA maximum current with Smart Card power-on (at 16 MHz X1)
 - 20 μ A maximum power-down current at 3.0V (without Smart Card)
 - 30 μA maximum power-down current at 3.6V (without Smart Card)
 - 100 μ A maximum power-down current at 5.4V (without Smart Card)
- Temperature range:
 - Commercial: 0 to +70 °C Operating Temperature
 - Industrial: -40 to +85 °C Operating Temperature
- Packages:
 - SSOP24
 - PLCC52 bond-out for emulation

8-bit Microcontroller with Multiprotocol Smart Card Interfaces

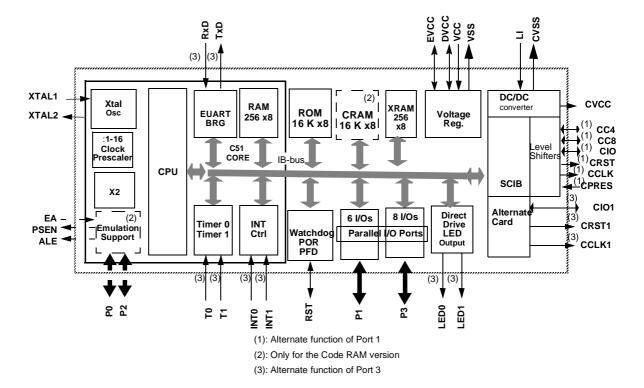
T83C5121 T85C5121 T89C5121

Preliminary

Rev. A1 - 22-Oct-01

2. Description

T8xC5121 is a high performance CMOS ROM/CRAM derivative of the 80C51 CMOS single chip 8-bit microcontrollers.


T8xC5121 retains the features of the Atmel Wireless and Microcontrollers 80C51 with extended ROM capacity (8 or 16 Kbytes), 256 bytes of internal RAM, a 4-level interrupt system, two 16-bit timer/counters (T0/T1), a full duplex enhanced UART (EUART) with baud rate generator (BRG) and an on-chip oscillator.

In addition, the T8xC5121 have on-chip eXpanded RAM of 256 bytes (XRAM), a Multi protocol Smart Card Interface, a dual data pointer, 2 programmable LED current sources (2-4-10 mA) and a hardware watchdog.

For preproduction, one T85C5121 version with additional 16K Code RAM (CRAM) is provided. Code can be loaded from a low-cost external serial EEPROM by In-System Programming (ISP) software residing in the on-chip ROM or from R232 interface.

T8xC5121 have 2 software-selectable modes of reduced activity for further reduction in power consumption. In the idle mode the CPU is frozen while the timers, the serial ports and the interrupt system are still operating. In the power-down mode the RAM is saved, the peripheral clock is frozen but the device still has wake-up capability through card detection, external interrupt and host serial interface.

3. Block Diagram

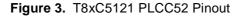


Figure 1. Block Diagram

4. Pin Description

4.1 Pinout

Figure 2. T8xC5121 24-pin SSOP Pinout

4.2 Signals

All the T8xC5121 signals are detailed in the following table:

Port	Signal Name	Alternate	Internal Power Supply	ESD	Туре	Description	
P1.0	CIO		CVCC	4KV	I/O	Smart card interface function Card I/O - Pull-up medium must be less than 20K	
					I/O	Input/Output function P1.0 is a bidirectional I/O port with internal pull-ups.	
					I	Reset configuration Input (high level due to internal pull-up)	
P1.1	CC8		CVCC	4KV	I/O	Smart card interface function Card contact 8 - Pull-up medium must be less than 20K	
					I/O	Input/Output function P1.1 is a bidirectional I/O port with internal pull-ups.	
					I	Reset configuration Input (high level due to internal pull-up)	
P1.2	CPRES		VCC	4KV	I	Smart card interface function Card presence - External Pull-up = 1Mohm	
					I/O	Input/Output function P1.2 is a bidirectional I/O port with internal pull-ups.	
					I	Reset configuration Input (high level due to internal pull-up)	
P1.3	CC4		CVCC	4KV	I/O	Smart card interface function Card contact 4 -Pull-up medium must be less than 20K	
					I/O	Input/Output function P1.3 is a bidirectional I/O port with internal pull-ups.	
					I	Reset configuration Input (high level due to internal pull-up)	
P1.4	CCLK		CVCC	4KV	ο	Smart card interface function Card clock	
					I/O	Input/Output function P1.4 is a bidirectional I/O port with internal pull-ups.	
					0	Reset configuration Output at low level	
P1.5	CRST		CVCC	4KV	ο	Smart card interface function Card reset - Pull-up medium must be less than 20K	
					I/O	Input/Output function P1.5 is a bidirectional I/O port with internal pull-ups.	

_	Signal		Internal Power		_		
Port	Name	Alternate	Supply	ESD	Туре	Description	
					0	Reset configuration Output at low level	
P3.0	RxD		EVCC		I	UART function Receive data input	
					I/O	P3.0 is a bidirectional I/O port with internal pull-ups.	
					I	Reset configuration Input (high level)	
P3.1	TxD		EVCC		0	UART function Transmit data output OE active at low or high level depending of PMSOEN bits in SIOCON Reg.	
					I/O	Input/Output function P3.1 is a bidirectional I/O port with internal pull-ups.	
					Z	Reset configuration High impedance due to PMOS switched OFF	
P3.2	INT0		DVCC		I	External interrupt 0 INT0 input set IE0 in the TCON register. If bit IT0 in this register is set, bits IE0 are set by a falling edge on INT0#. If bit IT0 is cleared, bits IE0 is set by a low level on INT0.	
					I/O	Input/Output function P3.2 is a bidirectional I/O port with internal pull-ups.	
					I	Timer 0: Gate input INT0 serves as external run control for Timer0 when selected in TCON register.	
					I/O	Test pin	
					I	Reset configuration Input (high level)	
P3.3	INT1		EVCC		I	External Interrupt 1 INT1 input set OEIT in ISEL Register, IE1 in the TCON register. If bit IT1 in this register is set, bits OEIT and IE1 are set by a falling edge on INT1. If bit IT1 is cleared, bits OEIT and IE1 is set by a low level on INT1	
		OE			I	UART function Output enable. A low or high level (depending OELEV bit in ISEL Register) on this pin disables the PMOS transistors of TxD (P3.1) and T0 (P3.4). This function can be disabled by software	
					I/O	Input/Output function P3.3 is a bidirectional I/O port with internal pull-ups.	
					I	Timer 1 function: Gate input INT1 serves as external run control for Timer1 when selected in TCON register.	

Port	Signal Name	Alternate	Internal Power Supply	ESD	Туре	Description	
					I	Reset configuration Input (high level)	
P3.4		ТО	EVCC		0	UART function Ready to send signal (RTS): Card presence information sent to external (GSM) or other informations. OE active at low or high level depending of PMSOEN bits in SIOCON Reg.	
					I/O	Input/Output function P3.4 is a bidirectional I/O port with internal pull-ups.	
		то			I	Timer0 function: External Clock input When Timer 0 operates as a counter, a falling edge on the T0 pin increments the count.	
					I/O	Test pin	
					Z	Reset configuration High impedance due to PMOS switched OFF	
P3.5	CIO1		DVCC		I/O	Alternate card function Card I/O: Pull-up medium must be less than 20K	
					I/O	Input/Output function P3.5 is a bidirectional I/O port with internal pull-ups.	
					I	Timer1 function: External Clock input When Timer 1 operates as a counter, a falling edge on the T1 pin increments the count.	
					I	Reset configuration Input (high level due to internal pull-up)	
P3.6	CCLK1		DVCC		0	Alternate card function Card clock	
		LED1			0	LED function These pin can be directly connected to the cathode of standard LED without external current limiting resistors. The typical current of each output can be programmed by software to 2, 4 or 10 mA (LEDCON register).	
					I/O	Input/Output function P3.6 is a bidirectional I/O port with internal pull-ups.	
					I	Reset configuration Input at high level	
P3.7	CRST1		DVCC		0	Alternate card function Card reset - Pull-up medium must be less than 20K	

6

Port	Signal Name	Alternate	Internal Power Supply	ESD	Туре	Description
		LED0			Ο	LED function These pin can be directly connected to the cathode of standard LED without external current limiting resistors. The typical current of each output can be programmed by software to 2, 4 or 10 mA (LEDCON register).
					I/O	Input/Output function P3.7 is a bidirectional I/O port with internal pull-ups.
					I	Reset configuration Input at high level
RST			vcc		I/O	Reset InputHolding this pin low for 64 oscillator periods while the oscillatoris running resets the device. The Port pins are driven to their resetconditions when a voltage lower than V_{IL} is applied, whether ornot the oscillator is running.This pin has an internal pull-up resistor which allows the device tobe reset by connecting a capacitor between this pin and VSS.Asserting \overline{RST} when the chip is in Idle mode or Power-Down modereturns the chip to normal operation.The output is active for at least 12 oscillator periods when an internalreset occurs.
XTAL1			VCC		I	Input to the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, its output is connected to this pin.
XTAL2			VCC		0	Output of the on-chip inverting oscillator amplifier To use the internal oscillator, a crystal/resonator circuit is connected to this pin. If an external oscillator is used, XTAL2 may be left unconnected.
vcc					PWR	Supply Voltage VCC is used to power the internal voltage regulators and internal I/O's.
LI					PWR	DC/DC Input LI must be tied to VCC through an external coil (typically 4,7 μ H) and provide the current for the pump charge of the DC/DC converter.
cvcc					PWR	Card Supply Voltage CVCC is the programmable voltage output for the Card interface. It must be connected to an external decoupling capacitor.
DVCC					PWR	Digital Supply Voltage DVCC is used to supply the digital core and internal I/O's. It is internally connected to the output of a 3V voltage regulator and must be connected to an external decoupling capacitor.

Port	Signal Name	Alternate	Internal Power Supply	ESD	Туре	Description
EVCC			VCC		PWR	Extra Supply Voltage EVCC is used to supply the level shifters of UART interface I/O pins. It must be connected to an external decoupling capacitor. This reference voltage is generated internally (automatically or not), or it can be connected to an external voltage reference.
CVSS					GND	DC/DC Ground CVSS is used to sink high shunt currents from the external coil.
VSS					GND	Ground
						ONLY FOR PLCC52 version:
P0[7:0]	AD[7:0]		VCC		I/O	Input/Output function Port 0 P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high impedance inputs. To avoid any parasitic current consumption, Floating P0 inputs must be pulled to V_{CC} or V_{SS} .
					I/O	Address/Data Low Mutiplexed Address/Data LSB for external access
P2[7:0]	A[15:8]		VCC		I/O	Input/Output function Port 2 P2 is an 8-bit open-drain bidirectional I/O port with internal pull-ups
					0	Address High Address Bus MSB for external access
P3.6	WR		DVCC		0	Write Signal Write signal asserted during external data memory write operation.
P3.7	RD		DVCC		I	Read signal Read signal asserted during external data memory read operation
ALE			VCC		0	Address Latch Enable Output The falling edge of ALE strobes the address into external latch.
PSEN	PSEN		VCC		0	Program Strobe Enable
EA	EA		VCC		I	External Access Enable This pin must be held low to force the device to fetch code from external program memory starting at address 0000h. It is latched during reset and cannot be dynamically changed during operation.

8

5. SFR Mapping

The Special Function Registers (SFR) of the T8xC5121 belongs to the following categories:

- C51 core registers: ACC, B, DPH, DPL, PSW, SP
- I/O port registers: P0, P1, P2, P3
- Timer registers: TCON, TH0, TH1, TMOD, TL0, TL1
- Serial I/O port registers: SADDR, SADEN, SBUF, SCON, BRL, BDRCON
- Power and clock control registers: PCON, CKRL, CKCON0, CKCON1, DCCKPS
- Interrupt system registers: IE0, IPL0, IPH0, IE1, IPL1, IPH1, ISEL
- WatchDog Timer: WDTRST, WDTPRG
- Others: AUXR, AUXR1, RCON
- Smart Card Interface: SCSR, SCCON/SCETU0, SCISR/SCETU1, SCIER/SCIIR, SCTBUF/SCRBUF, SCGT0/SCWT0, SCGT1/SCWT1, SCICR/SCWT2
- Port configuration: SIOCON, LEDCON

Table 2. SFR Addresses and Re	eset Values
-------------------------------	-------------

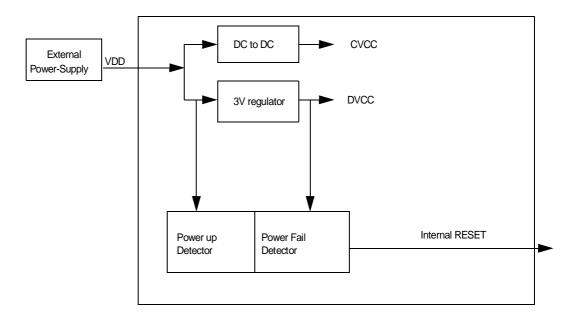
	0/8	1/9		2/A	3/B		4/C		5/D		6/E	7/F	
F8h													FFh
F0h	B 0000 0000	LEDCON XXXX 0000											F7h
E8h													EFł
E0h	ACC 0000 0000												E7h
D8h	-												DFł
D0h	PSW 0000 0000	RCON XXXX OXXX											D7ł
C8h													CFI
C0h													C7I
B8h	IPL0 XXX0 0000	SADEN 0000 0000		ISEL 0000 0100								DCCKPS XXXX XX11	BF
B0h	P3 1111 1111	IE1 XXXX 0XXX		IPL1 XXXX 0XXX	IPH1 XXXX 0XXX	0	SCWT0 * 1000 0000	0	SCWT1 * 0010 0101	0	SCWT2 * 0000 0000	IPH0 XXX0 0000	B7.
						1	SCGT0 * 0000 1100	1	SCGT1* 0000 0000	1	SCICR * 0000 0000	XXX0 0000	
A8h	IE0 0XX0 0000	SADDR 0000 0000	0	SCTBUF* 0000 0000	SCSR XXX0 1000	0	SCCON * 0X000 0000	0	SCISR* 10X0 0000	0	SCIIR* 0X00 0000	CKCON1 XXXX 0XXX	AF
			1	SCRBUF 0000 000		1	SCETU0 0111 0100	1	SCETU* 0XXX X001	1	SCIER * 0X00 0000		
A0h	P2 1111 1111			AUXR1 XXX XXX0							WDRST XXXX XXXX	WDTPRG XXXX X0000	A7.
98h	SCON XXX0 0000	SBUF XXXX XXXX		BRL 0000 0000	BDRCON XXX0 0000								9F
90h	P1 XX11 1111	SIOCON 00XX 0000										CKRL XXXX X1111	97
88h	TCON 0000 0000	TMOD 0000 0000		TL0 0000 0000	TL1 0000 0000		TH0 0000 0000		TH1 0000 0000		AUXR 00XX XX00	CKCON0 X0X0 X000	8F.
80h	P0 1111 1111	SP 0000 0111		DPL 0000 0000	DPH 0000 0000							PCON 00XX XX00	87
	0/8	1/9		2/A	3/B		4/C		5/D		6/E	7/F	

SCRS Bit (SCSR.0)	(*)
0	SFR value
1	SFR value

6. PowerMonitor

6.1 Overview The Powermonitor function supervise the evolutions of the voltages feeding the microcontroller, and if needed, suspends its activity when the detected value is out of specification.

It is guaranteed to start up properly when T8xC5121 is powered up and prevents code execution errors when the power supply becomes lower than the functional threshold.


This document describes the functions of the Powermonitor.

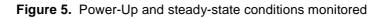
6.2 Description In order to start up and to properly maintain the microcontroller operation, VDD has to be stabilized in the VDD operating range and the oscillator has to be stabilised with a nominal amplitude compatible with logic threshold.

This control is carried out during three phases which are the power-up, normal operation and stop. So it is in accordance with the following requirements:

- it guarantees an operational Reset when the microcontroller is powered
- and a protection if the power supply goes out from the functional range of the microcontroller.

Figure 4. PowerMonitor block diagram

6.3 PowerMonitor diagram


The target of the PowerMonitor is to survey the power-supply in order to detect any voltage drops which are not in the target specification. This Powermonitor block checks two kind of situations which occur:

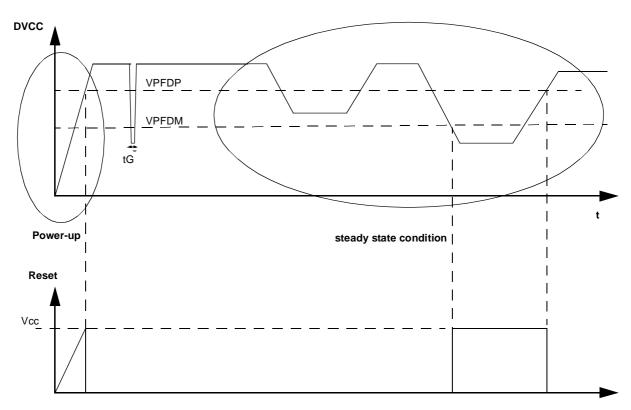

- during the power-up condition, when VDD is reaching the product specification,
- during a steady-state condition, when VDD is stable but disturbed by any undesirable voltage drops.

Figure 5. shows some configurations which can be met by the PowerMonitor.

Such device when it is integrated in a microcontroller, forces the CPU in reset mode when VDD reaches a voltage condition which is out of the specification.

The thresholds and their functions are:

- VPFDP: the output voltage of the regulator has reached a minimum functional value at the power-up.The circuit leaves the RESET mode
- VPFDM: the output voltage of the regulator has reached a low threshold functional value for the microcontroller. An internal RESET is set.

A glitch filtering prevents the system to RESET when short duration glitches are carried on VDD power-supply.

The following table 3 defines the electrical parameters:

Symbol	Parameter	Тур	Unit
VPFDP	Power fail high level threshold	2.55	V
VPFDM	Power fail low level threshold	2.45	V
t _G	Glitch maximum time	50	ns

Table 3. PowerMonitor electrical parameter	ers
--	-----

7. Power Monitoring and Clock Management

7.1 Introduction

For applications where power consumption is a critical factor, three power modes are provided:

- Idle mode
- Power-Down mode
- Clock Management (X2 feature and Clock Prescaler)
- 3V Regulator modes (pulsed or not pulsed)

7.2 Idle Mode

An instruction that sets PCON.0 causes that to be the last instruction executed before going into the Idle mode. In the Idle mode, the internal clock signal is gated off to the CPU, but not to the interrupt, Timer, and Serial Port functions. The CPU status is preserved in its entirely: the Stack Pointer, Program Counter, Program Status Word, Accumulator and all other registers maintain their data during Idle. The port pins hold the logical states they had at the time Idle was activated. ALE and PSEN hold at logic high levels.

There are two ways to terminate the Idle. Activation of any enabled interrupt will cause PCON.0 to be cleared by hardware, terminating the Idle mode. The interrupt will be serviced, and following RETI the next instruction to be executed will be the one following the instruction that put the device into idle.

The flag bit GF0 can be used to give an indication if an interrupt occurred during normal operation or during an Idle. For example, an instruction that activates Idle can also set one or both flag bits. When Idle is terminated by an interrupt, the interrupt service routine can examine the flag bits.

The other way of terminating the Idle mode is with a hardware reset. Since the clock oscillator is still running, the hardware reset needs to be held active for only two machine cycles (24 oscillator periods) to complete the reset.

7.3 Power-Down Mode

Entering Power-Down Mode

To save maximum power, a power-down mode can be invoked by software (refer to Table 13, PCON register).

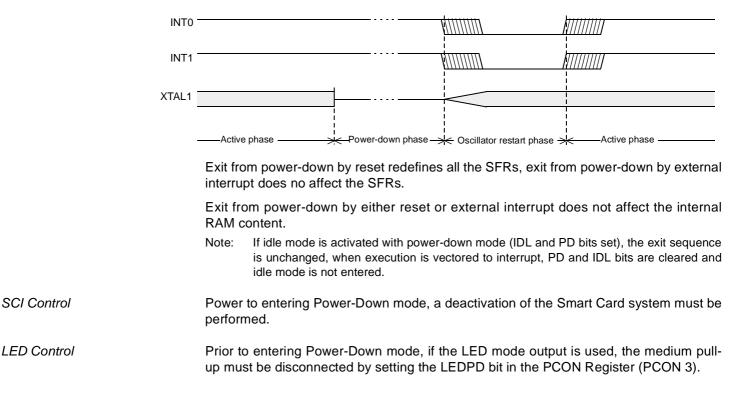
In power-down mode, the oscillator is stopped and the instruction that invoked powerdown mode is the last instruction executed. The internal RAM and SFRs retain their value until the power-down mode is terminated. V_{CC} can be lowered to save further power. Either a hardware reset or an external interrupt can cause an exit from powerdown. To properly terminate power-down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize.

Only external interrupts $\overline{\text{INT0}}$ and $\overline{\text{INT1}}$ are useful to exit from power-down. For that, interrupt must be enabled and configured as level or edge sensitive interrupt input. Holding the pin low restarts the oscillator but bringing the pin high completes the exit as

Holding the pin low restarts the oscillator but bringing the pin high completes the exit as detailed in Figure 6. When both interrupts are enabled, the oscillator restarts as soon as one of the two inputs is held low and power down exit will be completed when the first

input will be released. In this case the higher priority interrupt service routine is executed.

Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put into power-down mode.


Exit from Power-Down Mode Exit from power-down by external interrupt does not affect the SFRs and the internal RAM content.

The ports status under Power-Down is the status which was valid before entering this power mode.

The INT1 interrupt is a multiplexed input (see Interrupt paragraph) with CPRES (Card detection) and Rxd (UART Rx). So these three inputs can be used to exit from Power-Down mode. The configurations which must be set are detailed below:

- Rxd input:
 - RXEN (ISEL.0) must be set
 - EX1 (IE0.2) must be set
 - A low level detected during more than 100 microseconds exit from Power-Down.
- CPRES input:
 - PRSEN (ISEL.1) must be set
 - EX1 (IEO.2) must be set
 - EA (IE0.7) must be set
 - In the INT1 interrupt vector, the CPLEV Bit (ISEL.7) must be inverted
 - and PRESIT Bit (ISEL.5) must be reset.

Figure 6. Power-Down Exit Waveform

Low Power Mode

Only in Power-Down mode, in order to reduce the power consumption, the user can choose to select this low power mode.

The activation reference is the following.

- First select the Low Power mode by setting the CP bit in the AUXR Register (AUXR.
 6)
- The activation of Power-Down can then be done.

7.3.1 Reduced EMI Mode The ALE signal is used to demultiplex address and data buses on port 0 when used with external program or data memory. Nevertheless, during internal code execution, ALE signal is still generated.

Only in case of PLCC52 version, in order to reduce EMI, ALE signal can be disabled by setting AO bit.

The AO bit is located in AUXR register at bit location 0 (See Table 5.). As soon as AO is set, ALE is no longer output but remains active during MOVX and MOVC instructions and external fetches. During ALE disabling, ALE pin is weakly pulled high.

7.3.2 Power Modes Control Registers

Table 4. PCON Register

PCON (S:87h) Power configuration Register

7	6	5	4	3	2	1	0
SMOD1	SMOD0	-	-	GF1	GF0	PD	IDL

Bit Number	Bit Mnemonic	Description
7	SMOD1	Double Baud Rate bit Set to double the Baud Rate when Timer 1 is used and mode 1, 2 or 3 is selected in SCON register.
6	SMOD0	SCON Select bit When cleared, read/write accesses to SCON.7 are to SM0 bit and read/write accesses to SCON.6 are to SM1 bit. When set, read/write accesses to SCON.7 are to FE bit and read/write accesses to SCON.6 are to OVR bit. SCON is Serial Port Control register.
5		Reserved
4		Reserved
3	LEDPD	LED Control Power Down Mode bits When cleaned the I/O pull-up is the standard C51 pull-up control. When set the medium pull-up is disconnected.
2	GF0	General Purpose flag 0 One use is to indicate wether an interrupt occurred during normal operation or during Idle mode.
1	PD	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.
0	IDL	Idle Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode. If IDL and PD are both set, PD takes precedence.

Reset Value= 00XX XX00b

Table 5. AUXR Register

AUXR (S:8Eh) Auxiliary Register

7	6	5	4	3	2	1	0			
-	LP	-	-	-	-	EXTRAM	AO			
Bit Number	Bit Mnemonic		Description							
7	-	Reserved The value		s bit is indeter	minate. Do no	ot set this bit.				
6	LP	Clear to se	er mode sele elect standard ect low consu	I mode						
5	-	Reserved The value		s bit is indeter	minate. Do no	ot set this bit.				
4	-	Reserved The value		s bit is indeter	minate. Do no	ot set this bit.				
3	-	Reserved The value		s bit is indeter	minate. Do no	ot set this bit.				
2	-	Reserved The value		s bit is indeter	minate. Do no	ot set this bit.				
1	EXTRAM	(ONLY for Clear to m	EXTRAM select (ONLY for PLCC52 version) Clear to map XRAM datas in internal XRAM memory. Set to map XRAM datas in external XRAM memory.							
0	AO	(ONLY for Clear to re	ALE Output bit (ONLY for PLCC52 version) Clear to restore ALE operation during internal fetches. Set to disable ALE operation during internal fetches.							

Reset Value = 00XX XX00b

Table 6. IE0 Register

IE0 Interrupt Enable Register (A8h)

7	6	5	5 4 3 2 1 0							
EA	-	-	- ES ET1 EX1 ET0 EX0							
Bit Number	Bit Mnemonic		Description							
7	EA	Clear to di Set to ena If EA=1, e	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its interrupt enable bit.							
6	-	Reserved The value		s bit is indeter	minate. Do no	t set this bit.				
5	-		Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	ES	Clear to d	r t Enable bit isable serial p ible serial por							
3	ET1	Clear to d	isable timer 1	rupt Enable k overflow inter verflow interrup	rupt.					
2	EX1	Clear to d	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ET0	Clear to d	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.							
0	EX0	Clear to d	interrupt 0 Ei isable externa ible external i	al interrupt 0.						

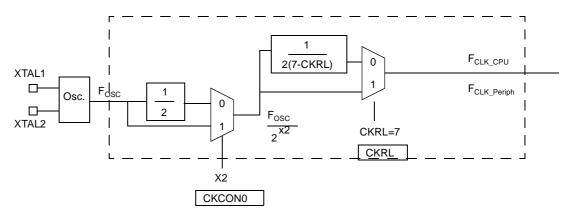
Reset Value = 0000 0000b

Table 7. ISEL Register

ISEL (S:BAh) Interrupt Enable Register

7	6	5	4	3	2	1	0			
CPLEV	OEIT	RXIT	RXIT PRESIT OELEV OEEN RXEN PRESEN							
Bit Number	Bit Mnemonic			Desc	cription					
7	CPLEV	This bit in Set this bi level.	Clear this bit to indicate that Card Presence IT will appear if CPRES is at low							
6	OEIT	Set by har	nterrupt flag dware leared by soft	ware						
5	PRESIT	Set by har		on interrupt f	ilag					
4	RXIT	Set by har	data interrup dware leared by soft	-						
3	OELEV	Set this bi		level hat high level i that low level						
2	OEEN	Clear to d	OE/INT1 Interrupt Disable bit Clear to disable INT1 interrupt Set to enable INT1 interrupt							
1	PRESEN	Clear to d	Card presence detection Interrupt Enable bit Clear to disable the card presence detection interrupt coming from SCIB. Set to enable the card presence detection interrupt coming from SCIB.							
0	RXEN	Clear to d	data Interrup sable the RxI ble the RxD in	D interrupt.						

Reset Value = 0000 0000b


8. Clock Management

8.1 Overview

In order to optimize the power consumption and the execution time needed for a specific task, an internal prescaler feature and a X2 feature have been implemented between the oscillator and the CPU.

8.2 Functional block diagram

If CKRL<>7 then:

$$\mathsf{F}_{\mathsf{CLK}-\mathsf{CPU}} = \frac{\mathsf{F}_{\mathsf{OSC}}}{2^{(x2)}} X \frac{1}{2(7-\mathsf{CKRL})}$$

If CKRL=7 then:

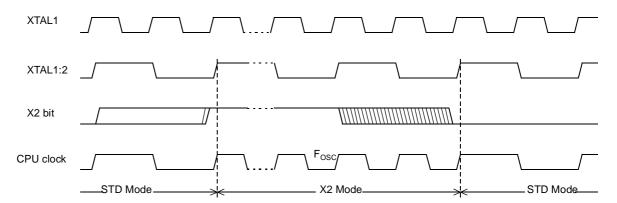
$$F_{CLK-CPU} = \frac{Fosc}{2^{\chi^2}}$$

8.3 X2 Feature

The T8xC5121 core needs only 6 clock periods per machine cycle. This feature called"X2" provides the following advantages:

- Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
- Save power consumption while keeping same CPU power (oscillator power saving).
- Save power consumption by dividing dynamically the operating frequency by 2 in operating and idle modes.
- Increase CPU power by 2 while keeping same crystal frequency.

In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by software.



8.3.1 Description The clock for the whole circuit and peripherals is first divided by two before being used by the CPU core and the peripherals.

This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio from 40 to 60%.

Figure 7. shows the clock generation block diagram. X2 bit is validated on the rising edge of the XTAL1÷2 to avoid glitches when switching from X2 to standard mode. Figure 8. shows the switching mode waveforms.

Figure 8. Mode Switching Waveforms

The X2 bit in the CKCON0 register (see Table 10) allow to switch from 12 clock periods per instruction to 6 clock periods and vice versa.

The T0X2, T1X2, UartX2, and WdX2 bits in the CKCON0 register (See Table 10.) and SCX2 bit in the CKCON1 register (see Table 11) allow to switch from standard peripheral speed (12 clock periods per peripheral clock cycle) to fast peripheral speed (6 clock periods per peripheral clock cycle). These bits are active only in X2 mode.

More information about the X2 mode can be found in the application note "How to take advantage of the X2 features in TS80C51 microcontroller?".

8.4 Clock prescaler

Before supplying the CPU and the peripherals, the main clock is divided by a factor 2 to 30 to reduce the CPU power consumption. This factor is controlled with the CKRL register.

Xtal (MHz)	X2 CPU CKCON0	CKRL value	Prescaler Factor	F _{CLK_CPU} , F _{CLK_Periph} (MHz)
16	0(reset mode)	07h	1	8
16	1 (X2 mode)	07h	1	16
16	1	07h	1	16
16	0	07h	1	8
16	0	06h	2	4
16	1	06h	2	8

Table 8. Examples of factor	ors
-----------------------------	-----

8.5 Clock control registers

8.5.1 Clock prescaler register

This register is used to reload the clock prescaler of the CPU and peripheral clock

Table 9. CKRL Register

CKRL - Clock Reload Register (97h)

7	6	5	4	3	2	1	0		
-	-	-	-	CKRL	CKRL	CKRL	CKRL		
Bit Number	Bit Mnemonic		Description						
7:4	-		Reserved: Do not use write those bits						
3:1	CKRL	Prescaler XXXX 000 XXXX 110	Clock Reload Register: Prescaler value XXXX 000Xb: Division factor equals 14 XXXX 110Xb: division factor equals 2 XXXX 111Xb: division factor equals 1						

Reset Value = XXXX 111Xb

Table 10. CKCON0 Register

CKCON0 - Clock Control Register (8Fh)

7	6	5	4	3	2	1	0		
-	WDX2	-	SIX2	-	T1X2	T0X2	X2		
Bit Number	Bit Mnemonic		Description						
7	-	Reserved							
6	WDX2	(This contr bit has no Cleared to	Watchdog clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Cleared to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.						
5	-	Reserved							
4	SIX2	(This contr bit has no Clear to se	Enhanced UART clock (Mode 0 and 2) (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.						
3	-	Reserved	Reserved						

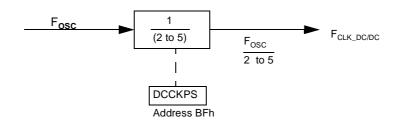
Bit Number	Bit Mnemonic	Description
2	T1X2	Timer1 clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle
1	T0X2	Timer0 clock (This control bit is validated when the CPU clock X2 is set; when X2 is low, this bit has no effect) Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle
0	X2	CPU clock Clear to select 12 clock periods per machine cycle (Standard mode) for CPU and all the peripherals. Set to select 6 clock periods per machine cycle (X2 mode) and to enable the individual peripherals "X2" bits.

Reset Value = X0X0 X000b

Table 11. CKCON1 Register

CKCON1 - Clock Control Register (AFh)

7	6	5	4	3	2	1	0		
-	-	-	-	SCX2	-	-	-		
Bit Number	Bit Mnemonic			Dese	cription				
7	-	Reserved							
6	-	Reserved							
5	-	Reserved							
4	-	Reserved							
3	SCX2		elect 6 clock	periods per pe periods per per		-			
2	-	Reserved	Reserved						
1	-	Reserved	Reserved						
0	-	Reserved							


Reset Value = XXXX 0XXXb

9. DC/DC CLOCK

9.1 Overview

The DC/DC Block needs a clock with a 50% duty cycle. The frequency must also respect a value between 3.68 MHz and 4 MHz. The first requirement imposes a divider in the clock path and the second constraint is solved with the use of a prescaler.

Figure 9. Functional block diagram

9.2 Clock control register

This register is used to reload the clock prescaler of the DC/DC converter clock.

DCCKPS - DC/DC converter Reload Register (BFh)

7	6	5	4	3	2	1	0			
-	-	-	DCCKPS DCCKPS							
Bit Number	Bit Mnemonic		Description							
7:2	-	Reserved: Do not use w	Reserved: Do not use write those bits							
1:0	DCCKPS	Prescaler values of the second	Clock Reload Register: Prescaler value 00b: Division factor equals 2 01b: division factor equals 3 10b: division factor equals 4 11b: division factor equals 5 (reset value which minimize the consumption)							

Reset Value = XXXX XX11b

9.3 Clock prescaler

Before supplying the DC/DC block, the oscillator clock is divided by a factor 2 to 5 to adapt the clock needed by the DC/DC converter. This factor is controlled with the DCCKPS register.

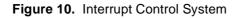
The prescaler factor must be chosen to match the requirement range which is 4MHz

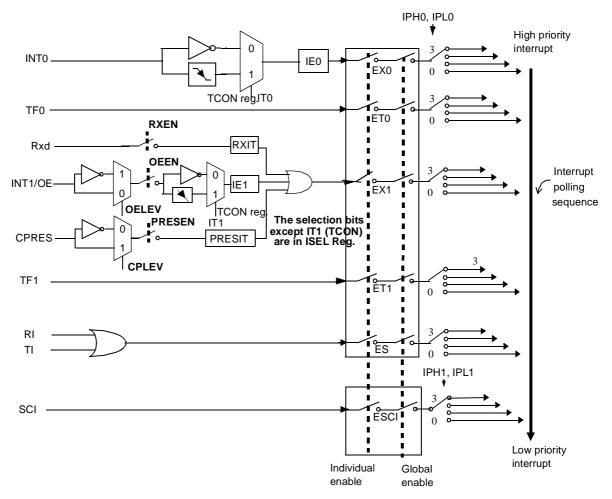
Table 13. Examples of factors

Xtal (MHz)	DCCKPS value	Prescaler Factor	DC/DC converter CLK (MHz)
8	00h	2	4
12	01h	3	4
14.756	02h	4	3.689
16	02h	4	4
20	03h	5	4

10. Smart Card Interface Block (SCIB)

The remainder of this chapter is available on the complete version of the T8xC5121 product Datasheet. To obtain a complete version of this document please contact:


cardreader@atmel-wm.com



11. Interrupt System

The T8xC5121 have a total of 6 interrupt vectors: four external interrupts (INT0, INT1/OE, CPRES, RxD), two timer interrupts (timers 0 and 1), serial port interrupt and Smart Card Interface interrupt. These interrupts are shown in Figure 10.

Each of the interrupt sources can be individually enabled or disabled by setting or clearing a bit in the Interrupt Enable register (See Table 16.). This register also contains a global disable bit, which must be cleared to disable all interrupts at once.

Each interrupt source can also be individually programmed to one of four priority levels by setting or clearing a bit in the Interrupt Priority register (See Table 19.) and in the Interrupt Priority High register (See Table 21.). Table 14 shows the bit values and priority levels associated with each combination.

IPH.x	IP.x	Interrupt Level Priority
0	0	0 (Lowest)
0	1	1
1	0	2
1	1	3 (Highest)

 Table 14.
 Priority Level Bit Values

A low-priority interrupt can be interrupted by a high priority interrupt, but not by another low-priority interrupt. A high-priority interrupt can't be interrupted by any other interrupt source.

If two interrupt requests of different priority levels are received simultaneously, the request of higher priority level is serviced. If interrupt requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence.

Table 15. Interrupt vector addresses

Interrupt source	Vector address
IEO	0003h
TF0	000Bh
IE1 & RxIt & Prit	0013h
TF1	001Bh
RI & TI	0023h
SCI	0053h

11.1 INT1 Interrupt Vector

The INT1 interrupt is multiplexed with the three following inputs:

- INT1/OE: Standard 8051 interrupt input
- Rxd: Received data on UART
- CPRES: Insertion or removall of the main card

The setting configurations for each input is detailed below:

11.1.1 INT1/OE input This interrupt input is active under the following conditions:

- It must be enabled thanks to OEEN Bit (ISEL Register)
- It can be active on a level or falling edge: thanks to IT1 Bit (TCON Register)
- If level triggering selection is set, the active level 0 or 1 can be selected with OELEV Bit (ISEL Register)

The Bit IE1 (TCON Register) is set by hardware when external interrupt detected. It is cleared when interrupt is processed.

11.1.2 Rxd input A second vector interrupt input is the reception of a character. UART Rx input can generate an interrupt if enabled with Bit RXEN (ISEL.0). The global enable bits EX1 and EA must also be set.

Then, the Bit RXIT (ISEL Register) is set by hardware when a low level is detected on P3.0/RXD input.

11.1.3 CPRES Input The third input is the detection of a level change on CPRES input (P1.2). This input can generate an interrupt if enabled with PRESEN (ISEL.1), EX1 (IE0.2) and EA (IE0.7) Bits.

This detection is done according to the level selected with Bit CPLEV (ISEL.7).

Then the Bit PRESIT (ISEL.5) is set by hardware when the triggering conditions are met. This Bit must be cleared by software.

7	6	5	4	3	2	1	0			
EA	-	-	ES	ET1	EX1	ET0	EX0			
Bit Number	Bit Mnemonic		Description							
7	EA	Clear to dis Set to enab If EA=1, ea	Enable All interrupt bit Clear to disable all interrupts. Set to enable all interrupts. If EA=1, each interrupt source is individually enabled or disabled by setting or clearing its interrupt enable bit.							
6	-	Reserved The value	read from this	bit is indetern	ninate. Do not	set this bit.				
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	ES	Clear to dis	E Enable bit Sable serial po Sable serial port							
3	ET1	Clear to dis	Timer 1 overflow interrupt Enable bit Clear to disable timer 1 overflow interrupt. Set to enable timer 1 overflow interrupt.							
2	EX1	Clear to dis	External interrupt 1 Enable bit Clear to disable external interrupt 1. Set to enable external interrupt 1.							
1	ETO	Clear to dis	Timer 0 overflow interrupt Enable bit Clear to disable timer 0 overflow interrupt. Set to enable timer 0 overflow interrupt.							
0	EX0	Clear to dis	nterrupt 0 En sable external ble external in	interrupt 0.						

Table 16. IE0 Register

Reset Value = 0XX0 0000b Bit addressable

T8xC5121

Table 17. IE1 Register

7	6	5	4	3	2	1	0		
-	-	-	-	ESCI	-	-	-		
Bit Number	Bit Mnemonic		Description						
7	-	Reserved The value	ead from this	bit is indetern	ninate. Do not	set this bit.			
6	-	Reserved The value i	Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-	Reserved The value i	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	ESCI		ipt Enable sable the SCI ble the SCI int	•					
2	-	Reserved The value	ead from this	bit is indetern	ninate. Do not	set this bit.			
1	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	-	Reserved The value i	ead from this	bit is indetern	ninate. Do not	set this bit.			

Reset Value = XXXX 0XXXb

Table 18. ISEL Register

7	6	5	4	3	2	1	0	
CPLEV	OEIT	PRESIT	RXIT	OELEV	OEEN	PRESEN	RXEN	
Bit Number	Bit Mnemonic			Desc	ription			
7	CPLEV	This bit indio Set this bit t level.	Clear this bit to indicate that Card Presence IT will appear if CPRES is at low					
6	-	Reserved The value re	ead from this	bit is indeterm	inate. Do not	set this bit.		
5	PRESIT	Set by hard	Card presence detection interrupt flag Set by hardware Must be cleared by software					
4	RXIT	Set by hard	ata interrupt ware ared by softwa	-				
3	OELEV	Set this bit t		e vel t high level is hat low level is				
2	OEEN	Clear to disa	OE/INT1 Interrupt Disable bit Clear to disable INT1 interrupt Set to enable INT1 interrupt					
1	PRESEN	Clear to disa	Card presence detection Interrupt Enable bit Clear to disable the card presence detection interrupt coming from SCIB. Set to enable the card presence detection interrupt coming from SCIB.					
0	RXEN	Clear to disa Set to enabl	ata Interrupt able the RxD e the RxD int m power dow	interrupt. errupt (a minir	nal bit width c	f 0.1 ms is rec	quired to	

Reset Value = 0000 0100b

T8xC5121

Table 19. IPL0 Register

7	6	5	4	3	2	1	0		
-	-	-	PS	PT1	PX1	PT0	PX0		
Bit Number	Bit Mnemonic		Description						
7	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value r	ead from this	bit is indeterm	inate. Do not	set this bit.			
5	-	Reserved The value r	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	PS		Priority bit H for priority	evel.					
3	PT1		erflow interru	u pt Priority b i level.	t				
2	PX1		External interrupt 1 Priority bit Refer to PX1H for priority level.						
1	PT0		Timer 0 overflow interrupt Priority bit Refer to PT0H for priority level.						
0	PX0		terrupt 0 Pric	•					

Reset Value = XXX0 0000b Bit addressable.

Table 20. IPL1 Register

7	6	5	4	3	2	1	0		
-	-	-	- PSCI						
Bit Number	Bit Mnem	-	Description						
7	-		Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-		Reserved The value read from this bit is indeterminate. Do not set this bit.						
5	-		Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-		erved value read fro	om this bit is ir	ideterminate. I	Do not set this	s bit.		
3	PS		Interrupt Price or to PSCIH fo	ority bit or priority level					
2	-		Reserved The value read from this bit is indeterminate. Do not set this bit.						
1	-		Reserved The value read from this bit is indeterminate. Do not set this bit.						
0	-		erved value read fro	om this bit is ir	ideterminate. I	Do not set this	s bit.		

Reset Value = XXXX 0XXXb Bit addressable.

T8xC5121

Table 21. IPH0 Register

7	6	5	4	3	2	1	0		
-	-	-	PSH	PT1H	PX1H	РТОН	PX0H		
Bit Number	Bit Mnemonic			Desc	ription				
7	-	Reserved The value	read from this	s bit is indeterr	ninate. Do not	set this bit.			
6	-	Reserved The value	read from this	s bit is indeterr	ninate. Do not	set this bit.			
5	-	Reserved The value	read from this	s bit is indeterr	ninate. Do not	set this bit.			
4	PSH	-	0 1 1 0						
3	PT1H		0 1 1 0						
2	PX1H		hterrupt 1 Pr <u>Priority Leve</u> Lowest Highest	iority High bit	t				
1	РТОН	Timer 0 overflow interrupt Priority High bit PT0H Priority Level 0 0 0 1 1 0 1 1 Highest							
0	PX0H	PX0 HPX0 0 0 0 1 1 0	External interrupt 0 Priority High bit PX0 HPX0 Priority Level 0 0 Lowest 0 1 1 0						

Reset Value = XXX0 0000b

Table 22. IPH1 Register

7	6	5	4	3	2	1	0		
-	-	-	-	PSCIH	-	-	-		
Bit Number	Bit Mnemonic		Description						
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
6	-	Reserved The value	read from this	bit is indeterr	ninate. Do not	set this bit.			
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	PSCIH	<u>PSCIH PS</u> 0 0 1	u pt Priority le <u>CI Priority lev</u> 0 Lowest 1 1 0		nificant bit				
2	-	Reserved The value	read from this	bit is indeterr	ninate. Do not	set this bit.			
1	-	Reserved The value	read from this	bit is indeterr	ninate. Do not	set this bit.			
0	-	Reserved The value	read from this	bit is indeterr	ninate. Do not	set this bit.			

Reset Value = XXXX 0XXXb

12. LED Ports Configuration

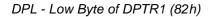
The current source of the LED Ports can be adjusted to 3 different values: 2, 4 or 10 mA. The control register LEDCON is detailed below.

12.1 Registers definition

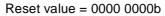
Table 23. LEDCON Register

7	6		5 4 3				1	0		
-	-		LED1[1] LED1[0] LED0[1]				LED0[0]			
Bit Number	Bit Mnemoni c				Description					
7:4	-		eserved o not use those bits							
3-2	LED1[1,0]	<u>LED</u>	E LED1 conf 1[1] <u>LED1[0</u> 0 1 0 1	 0 Standard C51 port 1 2 mA current source when P3.7 is at Low Level 0 4 mA current source when P3.7 is at Low Level 						
1:0	LED0[1,0]	LED	E LED0 conf 0[1] <u>LED0[0</u> 0 1 0 1 1	iguration:)] <u>Configuration</u> standard C51 port 2 mA current source when P3.6 is at Low Level 4 mA current source when P3.6 is at Low Level 10 mA current source when P3.6 is at Low Level						

Reset Value = XXXX 0000b

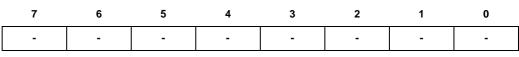

13. Dual Data Pointer

T8xC5121 contains a Dual Data Pointer accelerating data memory block moves. The Standard 80C52 Data Pointer is a 16-bit value that is used to address off-chip data RAM or peripherals. In T8xC5121, the standard 16-bit data pointer is called DPTR and located at SFR location 82H and 83H. The second Data Pointer named DPTR1 is located at the same address than the previous one. The DPTR select bit (DPS / bit0) chooses the active pointer and it is located into the AUXR1 register. It should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.


The user switches between data pointers by toggling the LSB of the AUXR1. The increment (INC) is a solution for this. All DPTR-related instructions use the currently selected DPTR for any activity. Therefore only one instruction is required to switch from a source to a destination address. Using the Dual Data Pointer saves code and resources when moves of blocks need to be accomplished.

The second Data Pointer can be used to address the on-chip XRAM.

Table 24. DPL Register



7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

DPH - High Byte of DPTR1 (83h)

Reset value = 0000 0000b

T8xC5121

Table 26. AUXR1 Register

AUXR1 - Dual Pointer Selection Register (A2h)

7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	DPS	
Bit Number	Bit Mnemonie	c		Des	cription			
7	-	Reserve The valu		his bit is indete	erminate. Do r	not set this bit.		
6	-		Reserved The value read from this bit is indeterminate. Do not set this bit.					
5	-		Reserved The value read from this bit is indeterminate. Do not set this bit.					
4	-	Reserve The valu		his bit is indete	erminate. Do r	not set this bit.		
3	-		Reserved The value read from this bit is indeterminate. Do not set this bit.					
2	-		Reserved The value read from this bit is indeterminate. Do not set this bit.					
1	-		Reserved The value read from this bit is indeterminate. Do not set this bit.					
0	DPS		select DPTR	as Data Pointe as Data Pointe				

Reset value = XXXX XXX0b

14. Memory Management

14.1 Program Memory

14.1.1 IntroductionAll the T8xC5121 versions implement 16 Kbytes of ROM memory, 256 Bytes RAM and
256 Bytes XRAM.

The hardware configuration byte and the split of internal memory spaces depends on the product and is detailed below.

14.1.2 ROM Configuration byte

Table 27. ROM Configuration byte hardware register

7	6	5	4	3	2	1	0		
-	BLJRB	-	-	-	-	-			
Bit Number	Bit Mnemonic		Description						
7		Reserved	Reserved						
6	BLJRB	Set to conf	Bootloader Jump Ram Bit Set to configure User Code in ROM Clear to configure Bootlader in ROM						
5-0		Reserved							

The BLJRB depends of the product version:

1: ROM mask version

• 0: EEPROM/CRAM versions

This bit defines if, after reset, either the Customer ROM program or the Bootloader program is executed (for In System programming).

It can be reprogrammed in parallel mode.

14.1.3 Program ROM lock Bits The program Lock system protects the on-chip program against software piracy.

The T8xC5121 products are delivered with the highest protection level.

Program Lock Bits		Bits	Protection description
Security level	LB1	LB2	
3	Ρ	Ρ	SSOP24 version: Read function is disabled.But checksum control is still enabled PLCC52 version: MOVC instruction executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset. But checksum control is still enabled. External execution is possible.

Table 28. T8xC5121 products protection level

P=programmed

14.1.4 Memory mapping

In the products versions, the following internal spaces are defined:

- RAM
- XRAM
- CRAM: 16 KBytes Program RAM Memory
- ROM

The specific accesses from/to these memories are:

- XRAM: if the bit RPS in RCON (described below) is reset, MOVX instructions address the XRAM space.
- CRAM: if the bit RPS in RCON is set, MOVX instructions address the CRAM space.

 Table 29.
 Memory Mapping

7	6	5	4	3	2	1	0	
	-	-		RPS				
Bit Number	Bit Mnemonic		Description					
7-4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.					
3	RPS	Set to map th	CRAM Space Map Bit Set to map the CRAM space during MOVX instructions Clear to map the Data space during MOVX. This bit has priority over the EXTRAM bit.					
2-0	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						

Reset Value = XXXX 0XXXb

14.1.5 T89C5121 Flash ROM Version

Three memory blocks are implemented

- An internal serial EEPROM can be loaded from external with the application program.
- The ROM memory contains the Bootloader program. The entry point is located at address F800h. The lower 14 KBytes between address C000h and F7FFh is, also, used for the Bootloader program.
- The CRAM is the application program memory. This memory is mapped in the External RAM space. The bit RPS in RCON (SFR address 0D1h) is set to map the CRAM space during MOVX instructions

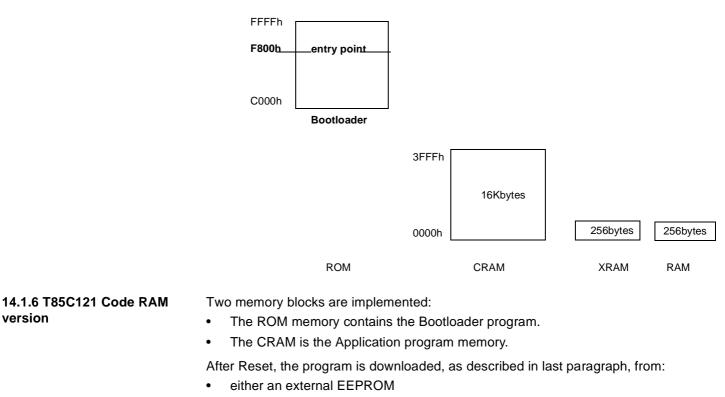
For first programming or an update, the program can be downloaded in the internal EEPROM (and in the CRAM) from an external device:

- either an external EEPROM if detected
- or from a host through RS232 serial communication.

For this purpose, an In System Programming (ISP) is supplied in a Bootloader. This Bootloader is program masked in ROM space.

The Hardware Byte BLJRB value is 0.

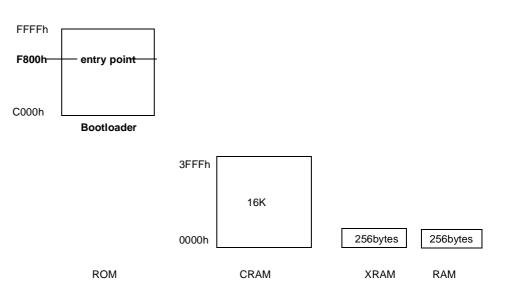
As described page 7, after Reset, the Bootloader program is executed.



If a serial communication device (as described above: I2C or RS232) is detected, the program download its content in the internal EEPROM and in CRAM.

Else, the program is internally downloaded from the internal EEPROM into the program CRAM memory (16Kbytes)

Then, in the two cases, the Bootloader executes a Long Jump at address 0000h which initialises the Program counter at the lower address (0000h) of the executable CRAM.



• or from an host connected on RS232 serial link.

into the program CRAM memory of 16Kbytes. Then the Program Counter is set at address 0000h of the CRAM space and the program is executed.

14.1.7 T83C5121 with mask ROM version

In this version, the customer program is masked in 16Kbytes ROM.

The customer program is masked in ROM during the final production phase. The ROM Size will be determined at mask generation process depending of the program size.

14.2 In System Programming

The In System Programming mode is only implemented in the following product versions:

- EEPROM version
- CRAM Version

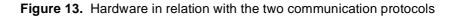
•

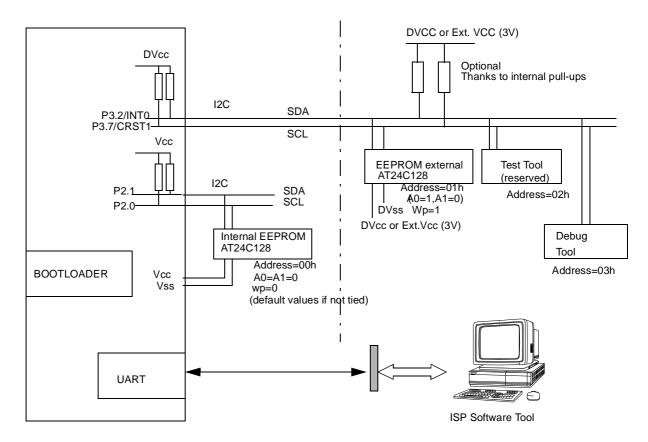
(The ROM product version is masked with the customer program and does not need ISP mode)

The ISP is used to download an Application program in the device and to Run it.

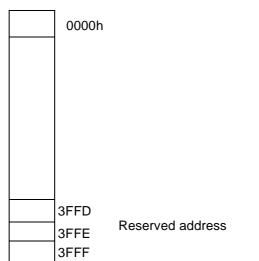
The communication protocols which are implemented are: UART and I2C.

14.2.1 Hardware interface


The hardware in relation with the two communication protocols:


- I2C Protocol
- Serial protocol

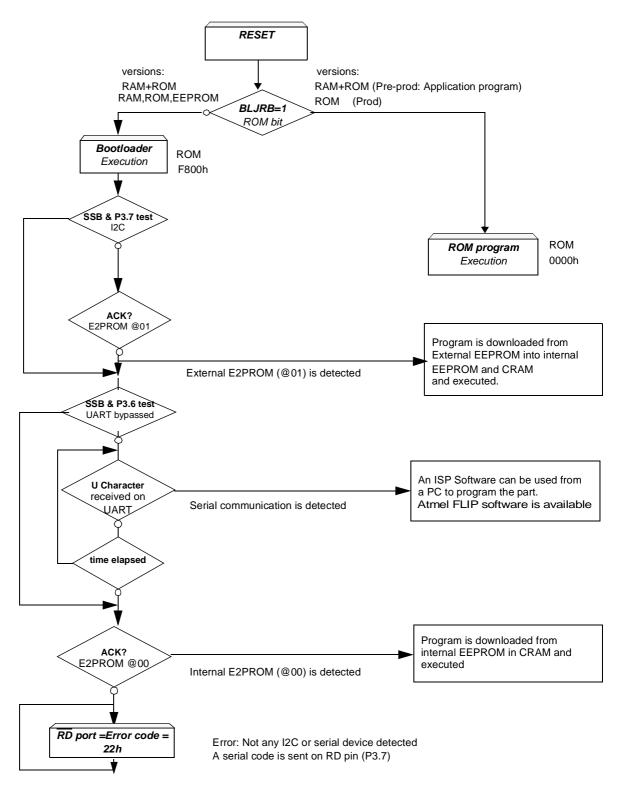
is detailed below.



The 16KBytes EEPROM mapping is the following:

The three lest bytes are reserved for respectively:


- Software Security Byte: address 3FFDh
- CRC Bytes: address 3FFEh and 3FFFh


The use of these bytes is described in the following paragraphs.

Therefore the User Program must be mapped from 0000h to 3FFCh address.

14.2.3 Bootloader Functional Diagram

As described in 15.1.2 a ROM bit BLJRB (Boot Loader Jump ROM Bit) defines which product version is. The Bootloader program is mapped in ROM space from address C000h up to FFFFh and the entry point is located at address F800h.

14.2.4 In-SystemThe download from the internal EEPROM to CRAM is executed after 4 seconds when
operating at 12MHz frequency.

14.3 Protection Mechanisms

14.3.1 Transfer Checks

In order to verify that the transfers are free of errors, a CRC check is implemented during the download of the program in CRAM.

This test is done at the end of the 16K space programming.

As detailed in the next algorithms:

- in ISP mode, if CRC test pass, a character Y is returned before the. CR LF characters else a character Z is retuned.
- in download mode, a serial data AA is sent on P3.7 port and CRAM is not executed.

For this purpose, the user program must include in the two last upper bytes (address 3FFEh and 3FFFh) the CRC of the previous bytes (calculated from the address 0000h to 3FFFDh).

The following frames are examples including the CRC in the two last upper bytes:

Data Bytes	HSB	LSB
	2 Byte	es CRC

Address: 3FFE,3FFF

- FF 03 C0 21 04 00 00 08 07 02 08 02 2D DB (CRC=2DDBh)
- FF 03 80 21 02 04 00 0A 03 06 C0 A8 70 01 E3 3D (CRC=E33Dh)
- FF 03 C0 21 02 01 00 10 02 06 00 00 00 00 05 06 00 00 76 55 49 AC (CRC=49ACh)

Table 30.	Synthesis	of transfer	protection	mechanisms
-----------	-----------	-------------	------------	------------

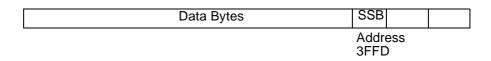
Source	Target	Check
MCU	CRAM	CRC computed during CRAM Write operation: if error an error code is applied on P3.7 and Code execution by LJMP000 is not done.
Intern. EEP	MCU	This Read operation is secured by the Write sequence described above
MCU	Intern. EEP	Same protection as in first row above because CRAM is written in sequence after each page programming of EEP
Ext. EEP	MCU	Same as above as datas are transferred to EEP INT and then to CRAM

Note: 1. The transfer of SSB Byte is also secured by CRC as the CRC is computed on all the 16K datas.

 If a Bad transfer as occurred in the Internal EEPROM(CRC is bad), as the CRC check is finally done at the end of CRAM programming, application program will NOT be executed after any Reset.

14.3.2 Read/Write protection

Lock Byte


In order to protect the content of the internal EEPROM, a Software Security Byte (SSB) defines two security levels:

- level 0: SSB=0xFF: Write and Read are allowed
- level 1: SSB=0xFE: Write is disabled
- level 2: SSB=0xFC: Write and Read are disabled.

This SSB Byte is located at address 3FFDh.

When the level 2 is set, the command to set level 1 is disabled. The security levels can only be increased.

The only mean to remove the security level 2 is to send a Full Chip Erase command.

Table 31.	synthesis of	f security	mechanisms
-----------	--------------	------------	------------

Source	Function	Protection
Internal EEPROM	Write	The first protection level of the SSB Byte IN the internal EEPROM protects against ISP Write command
Internal EEPROM	Read	The second protection level of the SSB Byte IN the internal EEPROM protects against ISP Read commands
CRAM	Write	The first protection level of the SSB Byte IN the internal EEPROM protects against ISP Write command in CRAM
CRAM	Read	The second protection level of the SSB Byte IN the CRAM protects against ISP Read commands

Configuration bits

The bootloader tests that I2C components are connected as slave components on the I2C external bus and later in the algorithm if characters are received on the UART input. This default configuration can be changed, after a first programming, in order:

- to disable new programming in download mode from external serial EEPROM
- to disable ISP programming using UART
- to avoid any conflict with the target hardware on external I2C bus or UART.

This can be configured with the two higher bits of the SSB Byte detailed in the previous paragraph.

The bit 7 is used to bypass (if 0) the External I2C Acknowledge test.

The bit 6 is used to bypass (if 0) the UART receipt test.

These two bypass modes can be disabled if a level 0 is applied on, respectively, P3.5 and P3.6 pins. This allows to force and use ISP even if the device has been configured as programmed device.

Table 32. Valid Software Security Byte values

SSB values	Functions
FE	No bypass and level1 security
FC	No bypass and level2 security
BF,BE,BC	UART bypass and security levels
7F,7E,7C	External I2C bypass and security levels
3F,3E,3C	UART and Ext. I2C bypass

14.3.3 UART Protocol

Overview	The serial protocol used is the same as described in Application Note ANM088.
Physical Layer	 The UART is used to transmit information with the following configuration: Character: 8-bit data Parity: none Stop: 1 bit Flow control: none Baudrate: autobaud is performed by the bootloader to compute the baudrate chosen by the host.
Datas and Limits	As described in paragraph 3.1, the downloaded program include the CRC value in the last two upper bytes of the 16Kbytes space.
	An update of a part of the 16K program cannot be done because the CRC value would have to be updated with a value which depends of the actual value of the rest of the program.
	So the Program function of the PC Software Tool include the individual program com- mands (with 64 data bytes) from address 0000h to address 3FFFh.
Frame Description	The Serial Protocol is based on the Intel Hex-type records.
	Intel Hex records consist of ASCII characters used to represent hexadecimal values and are summarized below:

Table 33. Intel Hex Type Frame

Record Mark ':'	Reclen	Load Offset	Record Type	Data or Info	Checksum
1-byte	1-byte=40h	2-bytes	1-byte	64-bytes	1-byte

Record Mark:

- Record Mark is the start of frame. This field must contain':'.

Reclen:

 Reclen specifies that the number of bytes of information or data that follow the Record Type field of the record.

Load Offset:

 Load Offset specifies the 16-bit starting load offset of the data bytes, therefore this field is used only for Program Data Record (see Table 34).

Record Type:

- Record Type specifies the command type. This field is used to interpret the remaining information within the frame. The encoding for all the current record types are described in Table 34.
- Data/Info:
 - Data/Info is a 64 Bytes length field. It consists of 64 bytes encoded as pairs of hexadecimal digits. The meaning of data depends on the **Record Type**.
- Checksum:
 - The two's complement of the 8-bit bytes that result from converting each pair of ASCII hexadecimal digits to one byte of binary, and including the **Reclen** field to and including the last byte of the **Data/Info** field. Therefore, the sum of all the ASCII pairs in a record after converting to binary, from the **Reclen** field to and including the **Checksum** field, is zero.
- Note: 1. A data byte is represented by two ASCII characters
 - 2. When the field Load Offset is not used, it should be coded as 2 bytes (00h 00h).

Command	Command Name	data[0]	data[1]	Command Effect
00h	Program Data			Program 64 Data Bytes
01h	End Of File	-	-	End of File
03h	Write Function	07h 05h 05h 03h	00h 01h 01h	Full Chip Erase Program SSB level1 Program SSB level2 LJMP(data[2],data[3]) (LJMP0000h)
04h	Display Function	Data $[0:1] = st$ Data $[2:3] = e$ Data $[4] = 00h$ data Data $[4] = 01h$ check Data $[4] = 03h$ CRAM	nd address -> Display -> Blank	Display Data
05h	Read Function	07h 0Fh	00h 00h	Read SSB Read Bootloader Version
06h	Direct Load of Baud Rate	HSB	LSB	Not implemented

Table 34. Frame Description

14.4 Protection Mechanisms

14.4.1 Transfer Checks

Table 35. Synthesis of the communication protection mechanisms

Source	Target	Check
UART ISP	MCU	Checksum included in commands is tested with calculated checksum: if bad, X echo returned to ISP
MCU	CRAM	CRC computed during CRAM Write operation: if error an error code is applied on P3.7. Error code'Z' is returned to ISP.
MCU	Intern. EEP	Same protection as above because CRAM is written in sequence after each page programming of EEP

Notes: 1. The transfer of SSB Byte is also secured by CRC as the CRC is computed on all the 16K datas.

2. If a Bad transfert as occurred in the Internal EEPROM (CRC is bad), as the CRC check is finally done at the end of CRAM programming, application program will NOT be executed after any Reset.

1	4.4.2	Sec	urity
---	-------	-----	-------

Table 36. Synthesis of the security mechanisms

Source	Target	Case	Protection
UART ISP	Intern. EEP	Read access	SSB level 2 must be set (done, if selected, at ISP Programming or Ext EEP Download)
UART ISP	CRAM	Read access	SSB level 2 IN CRAM must be set (SSB is downloaded from Int EEP after Reset)
UART ISP	Intern. EEP	Partial Programming which would not fit with old CRC	SSB level 1 must be set (done, if selected, at ISP Programming or Ext EEP Download) Then the EEP must be, first, erased before reprogramming. Programming is done on all the memory space
UART ISP	Intern. EEP	Programming	SSB level 1 must be set (done, if selected, at ISP Programming or Ext EEP Donwload)
UART ISP	CRAM	Program access	SSB level 1 IN Int EEP protects as, first, the Int EEP is programmed before CRAM
UART ISP	SSB in EEP and CRAM	level 2 to level 1	Protected by Bootloader
UART ISP	SSB in EEP and CRAM	level 1 to level 0	Protected by Bootloader

15. Timers/Counters

15.1 Introduction

The T8xC5121 implements two general-purpose, 16-bit Timers/Counters. Although they are identified as Timer 0, Timer 1, you can independently configure each to operate in a variety of modes as a Timer or as an event Counter. When operating as a Timer, a Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, a Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The Timer registers and associated control registers are implemented as addressable Special Function Registers (SFRs). Two of the SFRs provide programmable control of the Timers as follows:

 Timer/Counter mode control register (TMOD) and Timer/Counter control register (TCON) control respectively Timer 0 and Timer 1.

The various operating modes of each Timer/Counter are described below.

15.2 Timer/Counter Operations

For example, a basic operation is Timer registers THx and TLx (x=0, 1) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in the TCON register (see Figure 37) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx and when THx overflows it sets the Timer overflow flag (TFx) in the TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but the TRx bit must be cleared to preset their values, otherwise the behavior of t he Timer/Counter is unpredictable.

The C/Tx# control bit selects Timer operation or Counter operation by selecting the divided-down system clock or the external pin Tx as the source for the counted signal. The TRx bit must be cleared when changing the operating mode, otherwise the behavior of the Timer/Counter is unpredictable.

For Timer operation (C/Tx#= 0), the Timer register counts the divided-down system clock. The Timer register incremented once every peripheral cycle.

Exceptions are the Timer 2 Baud Rate and Clock-Out modes in which the Timer register is incremented by the system clock divided by two.

For Counter operation (C/Tx#= 1), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled during every S5P2 state. The Programmer's Guide describes the notation for the states in a peripheral cycle. When the sample is high in one cycle and low in the next one, the Counter is incremented. The new count value appears in the register during the next S3P1 state after the transition has been detected. Since it takes 12 states (24 oscillator periods) to recognize a negative transition, the maximum count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.

15.3 Timer 0

Timer 0 functions as either a Timer or an event Counter in four operating modes. Figure 15 to Figure 18 show the logic configuration of each mode.

Timer 0 is controlled by the four lower bits of the TMOD register (see Figure 38) and bits 0, 1, 4 and 5 of the TCON register (see Figure 37). The TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (T/C0#) and the operating mode (M10 and M00). The TCON register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0). For normal Timer operation (GATE0= 0), setting TR0 allows TL0 to be incremented by the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation.

Timer 0 overflow (count rolls over from all 1s to all 0s) sets the TF0 flag and generates an interrupt request.

It is important to stop the Timer/Counter before changing modes.

15.4.1 Mode 0 (13-bit Timer) Mode 0 configures Timer 0 as a 13-bit Timer which is set up as an 8-bit Timer (TH0 register) with a module-32 prescaler implemented with the lower five bits of the TL0 register (see Figure 15). The upper three bits of the TL0 register are indeterminate and should be ignored. Prescaler overflow increments the TH0 register.

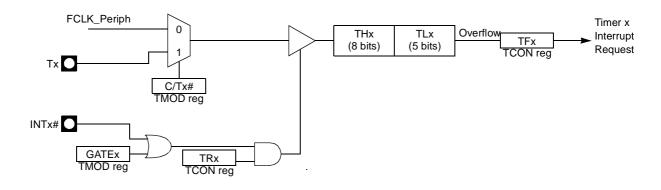
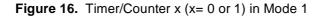
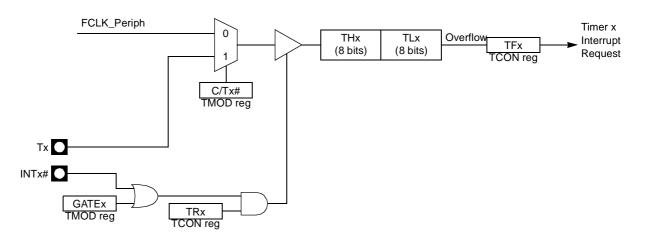
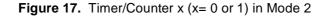
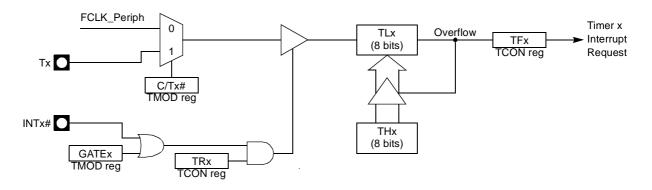




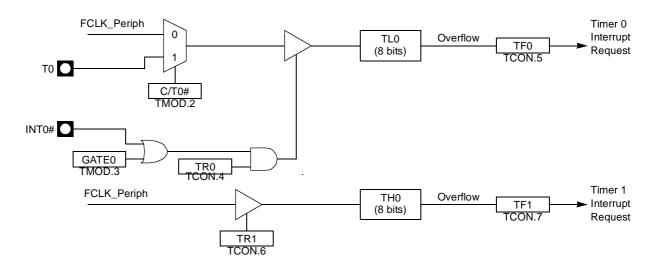
Figure 15. Timer/Counter x (x= 0 or 1) in Mode 0


15.5.2 Mode 1 (16-bit Timer) Mode 1 configures Timer 0 as a 16-bit Timer with the TH0 and TL0 registers connected in a cascade (see Figure 16). The selected input increments the TL0 register.



15.6.3 Mode 2 (8-bit Timer with Auto-Reload)

Mode 2 configures Timer 0 as an 8-bit Timer (TL0 register) that automatically reloads from the TH0 register (see Figure 17). TL0 overflow sets the TF0 flag in the TCON register and reloads TL0 with the contents of TH0, which is preset by the software. When the interrupt request is serviced, the hardware clears TF0. The reload leaves TH0 unchanged. The next reload value may be changed at any time by writing it to the TH0 register.



15.7.4 Mode 3 (Two 8-bit Timers) Mode 3 configures Timer 0 so that registers TL0 and TH0 operate as 8-bit Timers (see Figure 18). This mode is provided for applications requiring an additional 8-bit Timer or Counter. TL0 uses the Timer 0 control bits C/T0# and GATE0 in the TMOD register, and TR0 and TF0 in the TCON register in the normal manner. TH0 is locked into a Timer function (counting F_{UART}) and takes over use of the Timer 1 interrupt (TF1) and run control (TR1) bits. Thus, operation of Timer 1 is restricted when Timer 0 is in mode 3.

Figure 18. Timer/Counter 0 in Mode 3: Two 8-bit Counters

15.8 Timer 1

Timer 1 is identical to Timer 0 except for Mode 3 which is a hold-count mode. The following comments help to understand the differences:

- Timer 1 functions as either a Timer or an event Counter in the three operating modes. Figure 15 to Figure 17 show the logical configuration for modes 0, 1, and 2. Mode 3 of Timer 1 is a hold-count mode.
- Timer 1 is controlled by the four high-order bits of the TMOD register (see Figure 38) and bits 2, 3, 6 and 7 of the TCON register (see Figure 37). The TMOD register selects the method of Timer gating (GATE1), Timer or Counter operation (C/T1#) and the operating mode (M11 and M01). The TCON register provides Timer 1 control functions: overflow flag (TF1), run control bit (TR1), interrupt flag (IE1) and the interrupt type control bit (IT1).
- Timer 1 can serve as the Baud Rate Generator for the Serial Port. Mode 2 is best suited for this purpose.
- For normal Timer operation (GATE1= 0), setting TR1 allows TL1 to be incremented by the selected input. Setting GATE1 and TR1 allows external pin INT1# to control Timer operation.
- Timer 1 overflow (count rolls over from all 1s to all 0s) sets the TF1 flag and generates an interrupt request.
- When Timer 0 is in mode 3, it uses Timer 1's overflow flag (TF1) and run control bit (TR1). For this situation, use Timer 1 only for applications that do not require an interrupt (such as a Baud Rate Generator for the Serial Port) and switch Timer 1 in and out of mode 3 to turn it off and on.
- It is important to stop the Timer/Counter before changing modes.

15.9.1 Mode 0 (13-bit Timer) Mode 0 configures Timer 1 as a 13-bit Timer, which is set up as an 8-bit Timer (TH1 register) with a modulo-32 prescaler implemented with the lower 5 bits of the TL1 register (see Figure 15). The upper 3 bits of TL1 register are ignored. Prescaler overflow increments the TH1 register.

15.10.2 Mode 1 (16-bit Timer) Mode 1 configures Timer 1 as a 16-bit Timer with TH1 and TL1 registers connected in cascade (see Figure 16). The selected input increments the TL1 register.

⁵² **T8xC5121**

15.11.3 Mode 2 (8-bit Timer with Auto-Reload)
 Mode 2 configures Timer 1 as an 8-bit Timer (TL1 register) with automatic reload from the TH1 register on overflow (see Figure 17). TL1 overflow sets the TF1 flag in the TCON register and reloads TL1 with the contents of TH1, which is preset by the software. The reload leaves TH1 unchanged.
 15.12.4 Mode 3 (Halt)
 Placing Timer 1 in mode 3 causes it to halt and hold its count. This can be used to halt Timer 1 when the TR1 run control bit is not available i.e. when Timer 0 is in mode 3.

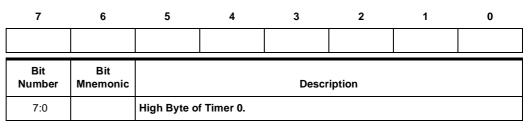
15.13 Registers

Table 37. TCON Register

TCON (S:88h) Timer/Counter Control Register.

7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Bit Number	Bit Mnemonic			Descr	iption		
7	TF1		ne hardware v	vhen processo mer/Counter o		•	
6	TR1	Clear to turn	Fimer 1 Run Control bit Clear to turn off Timer/Counter 1. Set to turn on Timer/Counter 1.				
5	TF0	Cleared by the	Timer 0 Overflow flag Cleared by the hardware when processor vectors to interrupt routine. Set by the hardware on Timer/Counter overflow when Timer 0 register overflows.				
4	TR0		off Timer/Countries				
3	IE1		ne hardware v	vhen interrupt external inter	•	0 00	```
2	IT1	Clear to sele		bit ctive (level trig active (edge tri			
1	IE0		ne hardware v	vhen interrupt external inter			
0	ITO	Clear to sele		bit ctive (level trig active (edge tri	• /		`` '

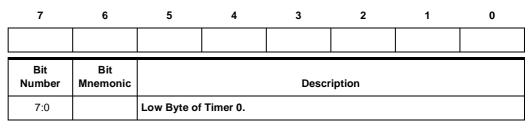
Table 38. TMOD Register


TMOD (S:89h) Timer/Counter Mode Control Register.s

		7	6	5	4	3	2	1	0
		GATE1	C/T1#	M11	M01	GATE0	С/Т0#	M10	M00
Bit Number	Bit Mnemonic				Descrip	tion			
7	GATE1	Timer 1 Gating C Clear to enable T Set to enable Tim	mer 1 whene			bit is set.			
6	C/T1#	Timer 1 Counter Clear for Timer of Set for Counter o	peration: Time	r 1 counts the					
5	M11	Timer 1 Mode Se							
4	M01	0 0 Mode 0: 0 1 Mode 1: 1 0 Mode 2:	16-bit Timer/	ounter (TH1) Counter. oad Timer/Co		caler (TL1). eloaded from	TH1 at overflo	DW.	
3	GATE0	Timer 0 Gating 0 Clear to enable T Set to enable Tim	mer 0 whene			and TR0 bit is	s set.		
2	C/T0#	Timer 0 Counter Clear for Timer of Set for Counter o	peration: Time	r 0 counts the		•			
1	M10	Timer 0 Mode Se							
0	M00	0 0 0 1 1 0 1 1	Mode 1:16-bi Mode 2:8-bit Mode 3:TL0 i	Timer/Counte t Timer/Count auto-reload Ti s an 8-bit Tim	er mer/Counter (·bit prescaler (TL0). Reloade ⁻ F0 bits.	,	t overflow.	

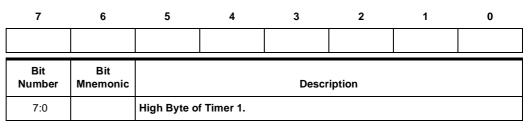
Reset Value= 0000 0000b

Table 39. TH0 Register


TH0 (S:8Ch) Timer 0 High Byte Register.

T8xC5121

Table 40. TL0 Register


TL0 (S:8Ah) Timer 0 Low Byte Register.

Reset Value= 0000 0000b

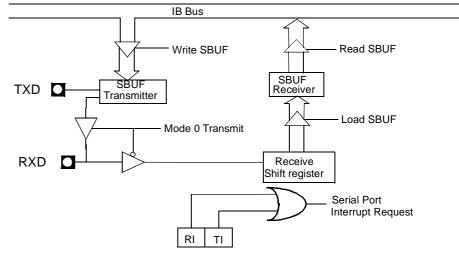
Table 41. TH1 Register

TH1 (S:8Dh) Timer 1 High Byte Register.

Reset Value= 0000 0000b

TL1 (S:8Bh) Timer 1 Low Byte Register.

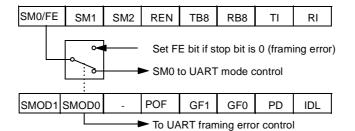
7	6	5	4	3	2	1	0
Bit Number	Bit Mnemonic	Description					
7:0		Low Byte of	Timer 1.				


16. Serial I/O Port

The serial I/O port is entirely compatible with the serial I/O port in the 80C52. It provides both synchronous and asynchronous communication modes. It operates as an Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes (Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously and at different baud rates

Serial I/O port includes the following enhancements:

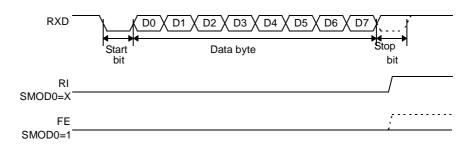
- Framing error detection and Automatic Address Recognition
- Internal Baud Rate Generator


Figure 19. Serial I/O UART Port Block Diagram

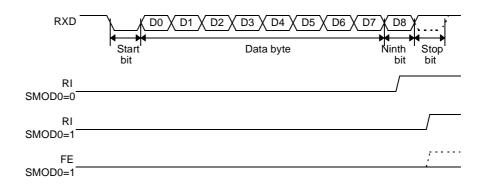
16.1 Framing Error Detection

Framing bit error detection is provided for the three asynchronous modes. To enable the framing bit error detection feature, set SMOD0 bit in PCON register (See).

Figure 20.	Framing Error	r Block Diagram



When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in SCON register bit is set.


Software may examine FE bit after each reception to check for data errors. Once set, only software or a reset clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When FE feature is enabled, RI rises on stop bit instead of the last data bit (See Figure 21. and Figure 22.).

56 **T8xC5121**

16.2 Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address, the receiver sets RI bit in SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If desired, you may enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

- Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).
- **16.2.1 Given Address** Each device has an individual address that is specified in SADDR register; the SADEN register is a mask byte that contains don't-care bits (defined by zeros) to form the device's given address. The don't-care bits provide the flexibility to address one or more slaves at a time. The following example illustrates how a given address is formed.

To address a device by its individual address, the SADEN mask byte must be 1111 1111b.

```
For example:
```

SADDR0101 0110b SADEN1111 1100b Given0101 01XXb

The following is an example of how to use given addresses to address different slaves:

```
Slave A:SADDR1111 0001b

<u>SADEN1111 1010b</u>

Given1111 0X0Xb
```

```
Slave B:SADDR1111 0011b
SADEN1111 1001b
Given1111 0XX1b
```

```
Slave C:SADDR1111 0010b
SADEN1111 1101b
Given1111 00X1b
```

The SADEN byte is selected so that each slave may be addressed separately.

For slave A, bit 0 (the LSB) is a don't-care bit; for slaves B and C, bit 0 is a 1. To communicate with slave A only, the master must send an address where bit 0 is clear (e.g. 1111 0000b).

For slave A, bit 1 is a 0; for slaves B and C, bit 1 is a don't care bit. To communicate with slaves A and B, but not slave C, the master must send an address with bits 0 and 1 both set (e.g. 1111 0011b).

To communicate with slaves A, B and C, the master must send an address with bit 0 set, bit 1 clear, and bit 2 clear (e.g. 1111 0001b).

16.2.2 Broadcast Address A broadcast address is formed from the logical OR of the SADDR and SADEN registers with zeros defined as don't-care bits, e.g.:

```
SADDR0101 0110b
SADEN1111 1100b
SADDR OR SADEN1111 111Xb
```

The use of don't-care bits provides flexibility in defining the broadcast address, however in most applications, a broadcast address is FFh. The following is an example of using broadcast addresses:

```
Slave A:SADDR1111 0001b

<u>SADEN1111 1010b</u>

Given1111 1X11b,

Slave B:SADDR1111 0011b

<u>SADEN1111 1001b</u>

Given1111 1X11B,

Slave C:SADDR=1111 0010b

<u>SADEN1111 1101b</u>

Given1111 1111b
```

For slaves A and B, bit 2 is a don't care bit; for slave C, bit 2 is set. To communicate with all of the slaves, the master must send an address FFh. To communicate with slaves A and B, but not slave C, the master can send and address FBh.

16.2.3 Reset Addresses	On reset, the SADDR, SADEN register are initialized to 00h, i.e. the given and broad- cast addresses are XXXX XXXXb (all don't-care bits). This ensures that the serial port is backwards compatible with the 80C51 microcontrollers that do not support automatic address recognition.

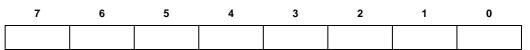
16.3 UART Output Configuration

16.3.1 Voltage level

The I/O Ports of UART are powered by the EVCC Regulator. The voltage of this regulator can be:

- Automatically controlled by the microcontroller which adapt the power supply level versus the OE input voltage level.
- Set at three defined levels (1.8V, 2.3V or 2.8V)

These configurations are defined withe the EVAUTO and VEXT0,VEXT1 Bits of SIO-CON Register.


16.3.2 Output Enable Function The UART outputs (Tx, T0) can be controlled by the Output Enable input.

The Bits PMOSEN0 and PMOSEN1 in SIOCON Register are used to control this output.

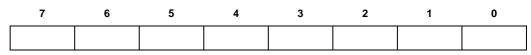
16.4 UART Control registers

Table 43. SADEN Register

SADEN Slave Address Mask Register (B9h)

Reset Value = 0000 0000b

 Table 44.
 SADDR Register


SADDR Slave Address Register (A9h)

Reset Value = 0000 0000b

 Table 45.
 SBUF Register

SBUF Serial Buffer Register (99h)

Reset Value = XXXX XXXXb

17. *UART Timings

The following description will be included in L version :

17.1 Mode Selection

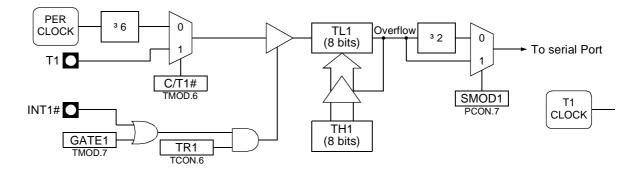
SM0 and SM1 bits in SCON register (see Figure 18.18) are used to select a mode among the single synchronous and the three asynchronous modes according to Table 46.

SM0	SM1	Mode	Description	Baud Rate
0	0	0	Synchronous Shift Register	Fixed / Variable
0	1	1	8-bit UART	Variable
1	0	2	9-bit UART	Fixed
1	1	3	9-bit UART	Variable

Table 46. Serial I/O Port Mode Selection

17.2 Baud Rate Generator

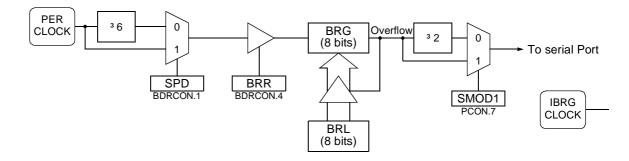
Depending on the mode and the source selection, the baud rate can be generated from either the Timer 1 or the Internal Baud Rate Generator. The Timer 1 can be used in Modes 1 and 3 while the Internal Baud Rate Generator can be used in Modes 0, 1 and 3.


The addition of the Internal Baud Rate Generator allows freeing of the Timer 1 for other purposes in the application. It is highly recommended to use the Internal Baud Rate Generator as it allows higher and more accurate baud rates than with Timer 1.

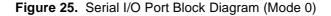
Baud rate formulas depend on the modes selected and are given in the following mode sections.

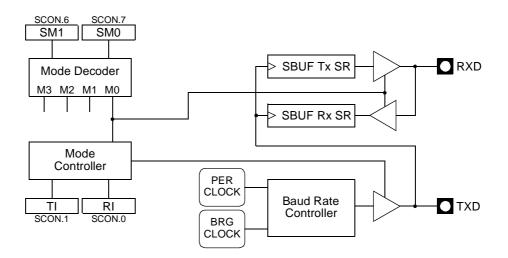
17.2.1 Timer 1

When using the Timer 1, the Baud Rate is derived from the overflow of the timer. As shown in Figure 23 the Timer 1 is used in its 8-bit auto-reload mode (detailed in Section 11.4.3, page 57). SMOD1 bit in PCON register allows doubling of the generated baud rate.


Figure 23. Timer 1 Baud Rate Generator Block Diagram

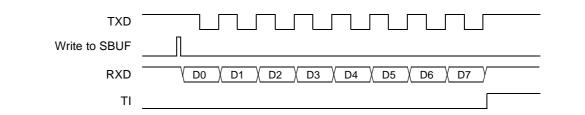
17.2.2 Internal Baud Rate Generator


When using the Internal Baud Rate Generator, the Baud Rate is derived from the overflow of the timer. As shown in Figure 24 the Internal Baud Rate Generator is an 8-bit auto-reload timer feed by the peripheral clock or by the peripheral clock divided by 6 depending on the SPD bit in BDRCON register (see Figure 18.22). The Internal Baud Rate Generator is enabled by setting BBR bit in BDRCON register. SMOD1 bit in PCON register allows doubling of the generated baud rate.

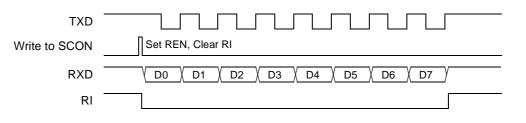

Figure 24. Internal Baud Rate Generator Block Diagram

17.2.3 Synchronous Mode (Mode 0)

Mode 0 is a half-duplex, synchronous mode, which is commonly used to expand the I/0 capabilities of a device with shift registers. The transmit data (TXD) pin outputs a set of eight clock pulses while the receive data (RXD) pin transmits or receives a byte of data. The 8-bit data are transmitted and received least-significant bit (LSB) first. Shifts occur at a fixed Baud Rate (see Section 17.2.6). Figure 25 shows the serial port block diagram in Mode 0.

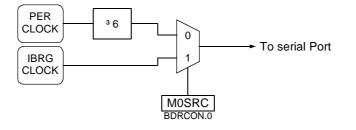


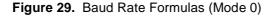
17.2.4 Transmission (Mode 0) To start a transmission mode 0, write to SCON register clearing bits SM0, SM1. As shown in Figure 26, writing the byte to transmit to SBUF register starts the transmission. Hardware shifts the LSB (D0) onto the RXD pin during the first clock cycle composed of a high level then low level signal on TXD. During the eighth clock cycle the MSB (D7) is on the RXD pin. Then, hardware drives the RXD pin high and asserts TI to indicate the end of the transmission.


Figure 26. Transmission Waveforms (Mode 0)

17.2.5 Reception (Mode 0) To start a reception in mode 0, write to SCON register clearing SM0, SM1 and RI bits and setting the REN bit.

As shown in Figure 27, Clock is pulsed and the LSB (D0) is sampled on the RXD pin. The D0 bit is then shifted into the shift register. After eight sampling, the MSB (D7) is shifted into the shift register, and hardware asserts RI bit to indicate a completed reception. Software can then read the received byte from SBUF register.


Figure 27. Reception Waveforms (Mode 0)



17.2.6 Baud Rate Selection (Mode 0)

In mode 0, baud rate can be either fixed or variable. As shown in Figure 28, the selection is done using M0SRC bit in BDRCON register. Figure 29 gives the baud rate calculation formulas for each baud rate source.

Figure 28. Baud Rate Source Selection (mode 0)

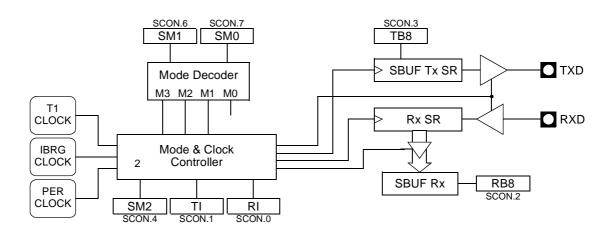
Baud_Rate= F_{PER}

 $Baud_Rate = \frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot (256 - BRL)}$

 $BRL= 256 - \frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot Baud_Rate}$

a. Fixed Formula

b. Variable Formula


62 **T8xC5121**

T8xC5121

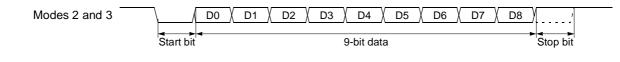
17.3 Asynchronous Modes (Modes 1, 2 and 3)

The Serial Port has one 8-bit and two 9-bit asynchronous modes of operation. Figure 30 shows the Serial Port block diagram in such asynchronous modes.

Figure 30. Serial I/O Port Block Diagram (Modes 1, 2 and 3)

Mode 1

Mode 1 is a full-duplex, asynchronous mode. The data frame (see Figure 31) consists of 10 bits: one start, eight data bits and one stop bit. Serial data is transmitted on the TXD pin and received on the RXD pin. When a data is received, the stop bit is read in the RB8 bit in SCON register.

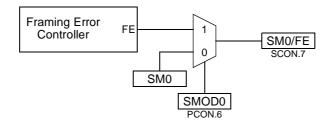

Figure 31. Data Frame Format (Mode 1)

Modes 2 and 3

Modes 2 and 3 are full-duplex, asynchronous modes. The data frame (see Figure 32) consists of 11 bits: one start bit, eight data bits (transmitted and received LSB first), one programmable ninth data bit and one stop bit. Serial data is transmitted on the TXD pin and received on the RXD pin. On receive, the ninth bit is read from RB8 bit in SCON register. On transmit, the ninth data bit is written to TB8 bit in SCON register. Alternatively, you can use the ninth bit as a command/data flag.

Figure 32. Data Frame Format (Modes 2 and 3)

17.3.1 Transmission (Modes 1,	To initiate a transmission, write to SCON register, setting SM0 and SM1 bits according
2 and 3)	to Table 46, and setting the ninth bit by writing to TB8 bit. Then, writing the byte to be
	transmitted to SBUF register starts the transmission.

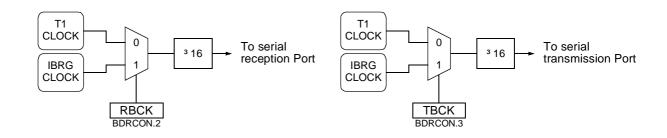

17.3.2 Reception (Modes 1, 2 and 3) To prepare for a reception, write to SCON register, setting SM0 and SM1 bits according to Table 46, and setting REN bit. The actual reception is then initiated by a detected high-to-low transition on the RXD pin.

17.3.3 Framing Error Framing error detection is provided for the three asynchronous modes. To enable the framing bit error detection feature, set SMOD0 bit in PCON register as shown in Figure 33.

When this feature is enabled, the receiver checks each incoming data frame for a valid stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous transmission by two devices. If a valid stop bit is not found, the software sets FE bit in SCON register.

Software may examine FE bit after each reception to check for data errors. Once set, only software or a chip reset clear FE bit. Subsequently received frames with valid stop bits cannot clear FE bit. When the framing error detection feature is enabled, RI rises on stop bit instead of the last data bit as detailed in Figure 18.17.

Figure 33. Framing Error Block Diagram


17.3.4 Baud Rate Selection (Modes 1 and 3)

In modes 1 and 3, the Baud Rate is derived either from the Timer 1 or the Internal Baud Rate Generator and allows different baud rate in reception and transmission.

As shown in Figure 34 the selection is done using RBCK and TBCK bits in BDRCON register.

Figure 35 gives the baud rate calculation formulas for each baud rate source while Table 47 details Internal Baud Rate Generator configuration for different peripheral clock frequencies and giving baud rates closer to the standard baud rates.

Figure 34. Baud Rate Source Selection (Modes 1 and 3)

Figure 35. Baud Rate Formulas (Modes 1 and 3)

 $Baud_Rate=\frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot (256 \text{ -BRL})}$ $BRL= 256 - \frac{2^{SMOD1} \cdot F_{PER}}{6^{(1-SPD)} \cdot 32 \cdot Baud_Rate}$

a. IBRG Formula

 $Baud_Rate = \frac{2^{SMOD1} \cdot F_{PER}}{6 \cdot 32 \cdot (256 \text{ -TH1})}$ TH1= 256 - $\frac{2^{\text{SMOD1}} \cdot \text{F}_{\text{PER}}}{192 \cdot \text{Baud}_{\text{Rate}}}$

b. T1 Formula

				• • • • • • • •				10.00				
	F _{PER} = 6 MHz ¹				F _{PER} = 8 MHz ¹				F _{PER} = 10 MHz ¹			
Baud Rate	SPD	SMOD1	BRL	Error %	SPD	SMOD1	BRL	Error %	SPD	SMOD1	BRL	Error %
115200	-	-	-	-	-	-	-	-	-	-	-	-
57600	-	-	-	-	1	1	247	3.55	1	1	245	1.36
38400	1	1	246	2.34	1	1	243	0.16	1	1	240	1.73
19200	1	1	236	2.34	1	1	230	0.16	1	1	223	1.36
9600	1	1	217	0.16	1	1	204	0.16	1	1	191	0.16
4800	1	1	178	0.16	1	1	152	0.16	1	1	126	0.16
		F _{PER} = 1	2 MHz ²			F _{PER} = 16 MHz ²			F _{PER} = 20 MHz ²			
Baud Rate	SPD	SMOD1	BRL	Error %	SPD	SMOD1	BRL	Error %	SPD	SMOD1	BRL	Error %
115200	-	-	-	-	1	1	247	3.55	1	1	245	1.36
57600	1	1	243	0.16	1	1	239	2.12	1	1	234	1.36
38400	1	1	236	2.34	1	1 0 1 1	230	0.16	1	1	223	1.36
		1										

10

1

1

Table 47. Internal Baud Rate Generator Value

Notes: 1. These frequencies are achieved in X1 mode, F_{PER} = $F_{OSC} \div 2$.

204

152

48

2. These frequencies are achieved in X2 mode, F_{PER}= F_{OSC}.

17.3.5 Baud Rate Selection (Mode 2)

1

1

1

1

1

1

217

178

100

0.16

0.16

0.16

1

1

1

19200

9600

4800

In mode 2, the baud rate can only be programmed to two fixed values: 1/16 or 1/32 of the peripheral clock frequency.

0.16

0.16

0.16

1

1

1

1

1

0

191

126

126

0.16

0.16

0.16

As shown in Figure 36 the selection is done using SMOD1 bit in PCON register. Figure 37 gives the baud rate calculation formula depending on the selection.

Figure 36. Baud Rate Generator Selection (mode 2)

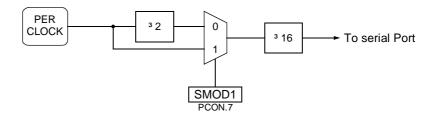


Figure 37. Baud Rate Formula (Mode 2)

 $\text{Baud}_\text{Rate} = \frac{2^{\text{SMOD1}} \cdot F_{\text{PER}}}{32}$

Table 48. BRL (S:91h)

BRL Register Baud Rate Generator Reload Register

7	6	5	4	3	2	1	0				
BRL7	BRL6	BRL5	BRL4	BRL3	BRL2	BRL1	BRL0				
Bit Number	Bit Mnemonic		Description								
7-0	BRL7:0	Baud Rate R	Baud Rate Reload Value.								

T8xC5121

Table 49. SCON Register

SCON (S:98h) Serial Control Register

			7	6	5	4	3	2	1	0			
			FE/SM0	SM1	SM2	REN	TB8	RB8	TI	RI			
Bit Number	Bit Mnemonic					Descripti	on						
7	FE	To sele Set by	raming Error bit. o select this function, set SMOD0 bit in PCON register. et by hardware to indicate an invalid stop bit. lust be cleared by software.										
	SM0	To sele Softwa	erial Port Mode bit 0. o select this function, clear SMOD0 bit in PCON register. oftware writes to bits SM0 and SM1 to select the Serial Port operating mode. efer to SM1 bit for the mode selections.										
6	SM1	To sele Softwa <u>SM0</u> 0 0 1	$\begin{array}{ccc} & 1 & 1 \\ & 0 & 2 \\ & 9-bit UART \\ \end{array} \begin{array}{c} & Shift Register \\ & 1 & 1 \\ & 1 & 1 \\ & 1 & 1 \\ & 1 & 1 \\ & 1 & 1 \\ & 1 & 1 \\ & 1 & 1 \\ & 2 & 1 & 1 \\ & 2 & 1 & 1 \\ & 3-bit UART \\ & 1 & 1 & 1 \\ & 3-bit UART \\ & 3-bit UART \\ & 5-cc/64 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 2 & 1 & 1 \\ & 3-bit UART \\ & 3-bit UART \\ & 5-cc/64 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 1 & 1 & 1 \\ & 2 & 1 & 1 \\ & 3-bit UART \\ & 1 & 1 & 1 \\ & 3-bit UART \\ & 1 & 1 & 1 \\ $										
5	SM2	Softwa recogn This al	Serial Port Mode bit 2 Software writes to bit SM2 to enable and disable the multiprocessor communication and automatic address recognition features. This allows the Serial Port to differentiate between data and command frames and to recognize slave and broadcast addresses.										
4	REN	Clear t	ver Enable bi o disable rece enable recept	ption in mode		and to enable t	ransmission ir	n mode 0.					
3	TB8	Modes	nit bit 8 0 and 1: Not 2 and 3: Soft		ne ninth data l	bit to be transn	nitted to TB8.						
2	RB8	Mode (Mode	Receiver bit 8 Mode 0: Not used. Mode 1 (SM2 cleared): Set or cleared by hardware to reflect the stop bit received. Modes 2 and 3 (SM2 set): Set or cleared by hardware to reflect the ninth bit received.										
1	TI	Set by	mit Interrupt the transmitte e cleared by s	er after the las	st data bit is tr	ansmitted.							
0	RI	Set by	ve Interrupt f the receiver a e cleared by s	after the stop	bit of a frame	has been rece	ived.						

Reset Value = XXX0 0000b

Table 50. BDRCON Register

BDRCON Baud Rate Control Register (9Bh)

7	6	5	4	3	2	1	0					
-	-	-	BRR	ТВСК	RBCK	SPD	SRC					
Bit Number	Bit Mnemonic		Description									
7	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit									
6	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit									
5	-	Reserved The value read	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	BRR	Clear to stop the	Baud Rate Run Control bit Clear to stop the Baud Rate. Set to start the Baud Rate.									
3	ТВСК	Clear to select	Transmission Baud rate Generator Selection bit for first UART Clear to select Timer 1 for the Baud Rate Generator. Set to select internal Baud Rate Generator.									
2	RBCK	Clear to select	Reception Baud Rate Generator Selection bit for first UART Clear to select Timer 1 for the Baud Rate Generator. Set to select internal Baud Rate Generator.									
1	SPD	Clear to select	Baud Rate Speed Control bit for first UART Clear to select the SLOW Baud Rate Generator when SRC=1. Set to select the FAST Baud Rate Generator when SRC=1.									
0	SRC	Clear to select	Baud Rate Source select bit in Mode 0 for first UART Clear to select F _{OSC} /12 as the Baud Rate Generator. Set to select the internal Baud Rate Generator.									

Reset Value = XXX0 0000b

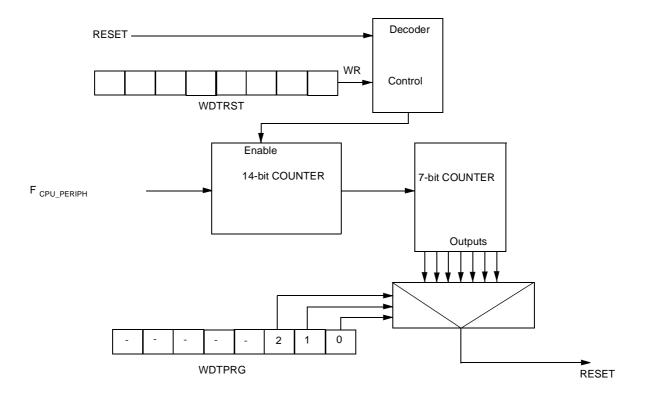
68

Table 51. SIOCON Register

SIOCON Serial Input Output Configuration Register Register (91h)

7	6	5	5 4 3 2 1							
PMSOEN1	PMSOEN) -	-	-	EVAUTO	VEXT0	VEXT1			
Bit Number	Bit Mnemonic		Description							
7:6	PMOSEN1 PMOSEN0	PMSO EN1 0 0 F 0 1 F 1 0 F	 0 1 PMOS is always driven according to P3.1 or P3.4 value 1 0 PMOS is driven only when OE is high 							
5:4	-	Reserved do not use tho	Reserved do not use those bits							
3	CPRESRE S	0Internal p	Card Presence pull-up resistor OInternal pull-up is connected 1Internal pull-up is disconnected							
2	EVAUTO	Set to enable t	EVcc Auto setup Set to enable the Automatic mode of EVcc regulator Clear to disable the Automatic mode of EVcc regulator							
1:0	VEXT0 VEXT1	VEXT0 VEXT1 0 0 Po 0 1 EV 1 0 EV	EVCC voltage configuration: (EXT0_VEXT1							

Reset Value = 00XX 0000b



18. WatchDog Timer

T8xC5121 contains a powerful programmable hardware WatchDog Timer (WDT) that automatically resets the chip if it software fails to reset the WDT before the selected time interval has elapsed. It permits large Time-Out ranking from 16ms to 2s @Fosc = 12MHz.

This WDT consist of a 14-bit counter plus a 7-bit programmable counter, a WatchDog Timer reset register (WDTRST) and a WatchDog Timer programmation (WDTPRG) register. When exiting reset, the WDT is -by default- disable. To enable the WDT, the user has to write the sequence 1EH and E1H into WDRST register. When the WatchDog Timer is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96xT_{OSC}$, where $T_{OSC}=1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.

Figure 38. WatchDog Timer

The WDT is controlled by two registers (WDTRST and WDTPRG).

7	6	5	4	3	2	1	0					
-	-	-	-	-	S2	S1	S0					
Bit Number	Bit Mnemonic		Description									
7	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.									
6	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.									
5	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.									
4	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.									
3	-	Reserved The value	Reserved The value read from this bit is indeterminate. Do not set this bit.									
2	S2	-	WatchDog Timer Duration selection bit 2 Work in conjunction with bit 1 and bit 0.									
1	S1		WatchDog Timer Duration selection bit 1 Work in conjunction with bit 2 and bit 0.									
0	S0	-	WatchDog Timer Duration selection bit 0 Work in conjunction with bit 1 and bit 2.									

Table 52. WDT Registers

Reset Value = XXXX X000b

The three lower bits (S0, S1, S2) located into WDTPRG register permits to program the WDT duration.

Table 53. Machine Cycle Count

S2	S1	S0	Machine Cycle Count
0	0	0	2 ¹⁴ - 1
0	0	1	2 ¹⁵ - 1
0	1	0	2 ¹⁶ - 1
0	1	1	2 ¹⁷ - 1
1	0	0	2 ¹⁸ - 1
1	0	1	2 ¹⁹ - 1
1	1	0	2 ²⁰ - 1
1	1	1	2 ²¹ - 1

To compute WD Time-Out, the following formula is applied:

$$\textit{TimeOut} = \frac{((\textit{FclkPeriph})^{x2})^{x2}}{12 \times ((2^{14} \times 2^{\textit{Svalue}}) - 1) \times (15 - \textit{CKRL})}$$

Note: Svalue represents the decimal value of (S2 S1 S0) / CKRL represents the Prescaler.

The following describes computed Time-Out value for Fosc = 12MHz

S2	S1	S0	Time-Out for F _{osc} =12MHz			
0	0	0	16.38 ms			
0	0	1	32.77 ms			
0	1	0	65.54 ms			
0	1	1	131.07 ms			
1	0	0	262.14 ms			
1	0	1	524.29 ms			
1	1	0	1.05 s			
1	1	1	2.10 s			

Table 54. Time-Out computation @12MHz

 Table 55.
 Watchdog Timer Enable Register

WDTRST - WatchDog Timer Enable register (Write Only) (A6h)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-

Reset Value = XXXX XXXXb

The WDTRST register is used to reset/enable the WDT by writing 1EH then E1H in sequence.

18.1 WatchDog Timer during Power down mode and Idle

In Power Down mode the oscillator stops, which means the WDT also stops. While in Power Down mode the user does not need to service the WDT. There are 2 methods of exiting Power Down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power Down mode. When Power Down is exited with hardware reset, servicing the WDT should occur as it normally does whenever PAROS is reset. Exiting Power Down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power Down.

To ensure that the WDT does not overflow within a few states of exiting of powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

19. Electrical Characteristics

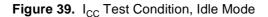
19.1 Absolute Maximum Ratings ⁽¹⁾

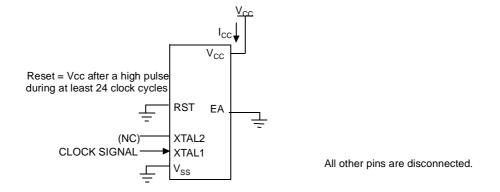
Ambiant Temperature Under Bias	
Storage Temperature	
Voltage on V_{CC} to V_{SS}	
Voltage on Any Pin to V _{SS}	
Power Dissipation TBD W ⁽²⁾	

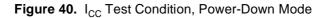
- Note: 1. Stresses at or above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
 - 2. This value is based on the maximum allowable die temperature and the thermal resistance of the package.

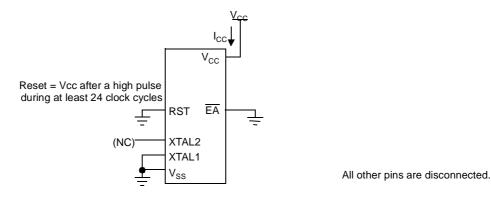
19.2 DC Parameters

 $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C; V_{SS} = 0 \text{ V}; V_{CC} = 2.85 \text{V to } 5.4 \text{V}; \text{ F=0 to } 16 \text{MHz}$ $T_{A} = -40 \text{ to } +85^{\circ}C; V_{SS} = 0 \text{ V}; V_{CC} = 2.85 \text{V to } 5.4 \text{V}; \text{ F=0 to } 16 \text{MHz}$


Table 56. Core DC Parameters (XTAL, RST, P0, P2, ALE, PSEN, EA)


Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.5		0.2 V _{CC} - 0.1	V	
V _{IH}	Input High Voltage except XTAL1, RST	0.2 V _{CC} + 0.9		V _{CC} + 0.5	V	
V _{IH1}	Input High Voltage, XTAL1, RST	0.7 V _{CC}		V _{CC} + 0.5	V	
V _{OL}	Output Low Voltage, Port 0 Output Low Voltage, Port 2			0.45 0.45	V	$I_{OL} = 1.6mA$ $I_{OL} = 0.8mA$
V _{OH}	Output High Voltage, Port 0 Output High Voltage, Port 2	0.9 x Vcc 0.9 x Vcc			V	I _{OH} = -40mA I _{OH} = -10mA
DI _{CC}	Digital Supply Output Current	10			mA	C _L = 100 nF F= 16 MHz X1
DV_{CC}	Digital Supply Voltage	2.65	2.9	3.0	V	C _L = 100 nF
V _{PFDP}	Power fail high level threshold		2.55		V	
V_{PFDM}	Power fail low level threshold		2.45		V	
$t_{\text{rise,}}t_{\text{fall}}$	V _{DD} rise and fall time	1µs		600	second	


19.2.1 Description


The Operating conditions for Icc Tests are the following:

Operating I_{CC} Test Condition



Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
		-0.5		0.4	V	EVCC = 1.8V
V _{IL}	Input Low Voltage	-0.5		0.5	V	EVCC = 2.3V
		-0.5		0.5	V	EVCC = 2.8V
		1.4		2.3	V	EVCC = 1.8V
V	/ Input High Voltage	1.6		2.8	V	EVCC = 2.3V
V _{IH}	Input High Voltage	2.0		3.3	V	EVCC = 2.8V
		0.7 x EVcc	EVcc	EVcc + 0.5	V	External EVcc mode ⁽¹⁾
V _{OL}	Output Low Voltage			0.4	V	I _{OL} = 1.2 mA
V _{OH}	Output High Voltage	1.6		1.8 2.7	V V	EVCC = 1.8V I _{OH} = 1µA EVCC = 2.8V I _{OH} = 1µA
011		0.8 x EVcc		EVcc	V	External EVcc mode
EI _{CC}	Extra Supply Current			+3	mA	C _L = 100 nF
		1.6	1.7	1.8	V	C _L = 100 nF, 1.8V
		2.1	2.2	2.3	V	C _L = 100 nF, 2.3V
EV_{CC}	Extra Supply Voltage	2.6	2.7	2.8	V	C _L = 100 nF, 2.8V
		1.6		Vcc	V	External drive, -E option

Table 57. Serial Interface DC parameters (P3.0, P3.1, P3.3 and P3.4)

Note: 1. In Automatic mode, EVCC = V_{IH}

Table 58. LED outputs DC Parameters (P3.6 and P3.7)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{OL}	Output Low Current, P3.6 and P3.7 LED modes	1 2 5	2 4 10	4 8 20	mA mA mA	2 mA configuration 4 mA configuration 10 mA configuration (TA = -20°C to +50°C, V_{CC} - V_{OL} = 2 V± 20%)

Table 59. Smart Card 5V Interface DC parameters

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
CI _{CC}	Card Supply Current	60		121 105 102	mA	VCC = 5.4V VCC = 4V VCC = 2.85V
CV _{CC}	Card Supply Voltage	4.6		5.4	V	Icard=55 mA
	Ripple on Vcard			200	mV	0 <icard<55 ma<="" td=""></icard<55>
cv _{cc}	Spikes on Vcard	4.6		5.4	V	Maxi. charge 20nA.s Max. duration 400 ns Max. variation Icard 100mA
T _{VHLI}	Vcard to 0			750	μs	Icard=0 Vcard=5V to 0.4V

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
CI _{CC}	Card Supply Current	60		110 89 110	mA	VCC = 5.4V VCC = 4V VCC = 2.85V
CV _{CC}	Card Supply Voltage	2.7		3.3	V	Icard=50 mA
	Ripple on Vcard			200	mV	0 <lcard<55 ma<="" td=""></lcard<55>
CV _{cc}	Spikes on Vcard	2.7		3.3	V	Maxi. charge 10nA.s Max. duration 400 ns Max. variation Icard 50mA
T _{VHLI}	Vcard to 0			750	μs	Icard=0 Vcard=3V to 0.4V

Table 60. Smart Card 3V Interface DC parameters

Table 61. Smart Card 1.8V Interface DC parameters

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
CI _{CC}	Card Supply Current	20		109 100 82	mA	VCC = 5.4V VCC = 4V VCC = 2.85V
CV _{CC}	Card Supply Voltage	1.65		1.95	V	Icard=20 mA
	Ripple on Vcard			200	mV	0 <icard<55 ma<="" td=""></icard<55>
CV _{CC}	Spikes on Vcard	1.65		1.95	V	
T _{VHLI}	Vcard to 0			750	μs	Icard=0 Vcard=1.8V to 0.4V

Table 62. Into DC Parameters (Port P3.2)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL}	Output Low Voltage	0 (1) 0(1)		0.2 x Vcc 0.5	V	I _{OL} = 20 μA I _{OL} =-200 μA
V _{OH}	Output High Voltage	0.7 x Vcc		Vcc (1)	V	I _{OH} = 20 μA
t _R t _F	Rise and Fall delays			9% x T (max 50)	ns	C _{IN} =30pF

Note: 1. The voltage on CLK should remain between -0.3V and Vcc+0.3V during dynamic operation

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
		0(1)		0.5	V	I _{OL} = 20 μA (5V)
V _{OL}	Output Low Voltage	0(1)		0.2xVcc		$I_{OL} = 20 \ \mu A (1.8,3 \ V)$
		0(1)		0.4		I _{OL} = 50 μA (5V)
I _{OL}	Output Low Current			15	mA	
	V _{OH} Output High Voltage	0.7 x Vcc		Vcc	V	I _{OH} = 20 μA (1.8V)
V		0.7 x Vcc		Vcc	V	I _{OH} = 20 μA (3V)
v _{он}		0.7 x Vcc		Vcc	V	I _{OH} = 20 μA (5V)
		Vcc - 0.5		Vcc	V	$I_{OH} = 50 \ \mu A \ (5V)$
I _{OH}	Output High Current			15	mA	
				8% x T		C _{IN} =30pF (5V)
t _R t _F	Rise and Fall delays			22.5	20	C _{IN} =30pF (3V)
				50	ns	C _{IN} =30pF (1.8V)
	Frequency	3.54		5	MHz	
	Voltage Stability	-0.25		0.4 x Vcc	V	Low level
		Vcc-0.5		Vcc + 0.25		High level
	Frequency variation			1%		
	Cycle ratio	45%		55%		

Table 63. Smart Card Clock DC parameters (Port P1.4)

Note: (1) The voltage on CLK should remain between -0.3V and Vcc+0.3V during dynamic operation

Table 64.	Alternate Ca	rd Clock DC pa	rameters (Port P3.6)
-----------	--------------	----------------	----------------------

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL}	Output Low Voltage	0 (1) 0(1)		0.2 x Vcc 0.5	V	I _{OL} = 20 μA I _{OL} =-200 μA
V _{OH}	Output High Voltage	0.7 x Vcc		Vcc (1)	V	I _{OH} = 20 μA
t _R t _F	Rise and Fall delays			9% x T (max 50)	ns	C _{IN} =30pF

Note: 1. The voltage on CLK should remain between -0.3V and Vcc+0.3V during dynamic operation

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{IL}	Input Low Voltage	0(1) 0(1)		0.5 0.15 x Vcc	V	I _{IL} = 500 μA I _{IL} = 20 μA
١ _L	Input Low Current			500	μA	
V _{IH}	Input High Voltage	0.7 x Vcc		Vcc	V	I _{IH} = -20 μA
I _{IH}	Input High Current			-20 / +20	μA	
V _{OL}	Output Low Voltage	0(1)		0.4 0.4 0.3	V	$I_{OL} = 1mA (5V)$ $I_{OL} = 1mA (3V)$ $I_{OL} = 1mA (1.8V)$
I _{OL}	Output Low Current			15	mA	
V _{OH}	Output High Voltage	0.8 x Vcc 0.7 x Vcc		Vcc (1)	V	I _{OH} = 20 μA (5V) I _{OH} = 20 μA (3V) I _{OH} = 20 μA (1.8V)
I _{OH}	Output High Current			15	mA	
	Voltage Stability	-0.25 0.8 x Vcc		0.4 Vcc + 0.25	V	Low level High level
t _R t _F	Rise and Fall delays			0.8 1	μs	C _{IN} =30pF Output C _{IN} =30pF Input

Table 65. Smart Card I/O DC Parameters (P1.0)

Notes: 1. The voltage on RST should remain between -0.3V and Vcc+0.3V during dynamic operation.

Table 66.	Alternate	Card I/O	DC	Parameters	(P3 5)
	/		20	i ulumotoro	(1 0.0)

Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
V _{IL}	Input Low Voltage	-0.3		0.2 x Vcc	V	IIL=1 mA
V _{IH}	Input High Voltage	0.7 x Vcc		Vcc + 0.3	V	I _{IH} = -20 μA
V _{OL}	Output Low Voltage	0(1)		0.3	V	I _{OL} = 1000 μA
V _{OH}	Output High Voltage	0.7 x Vcc		Vcc (1)	V	I _{OH} = 20 μA
t _R t _F	Rise and Fall delays			1	μs	C _{IN} =30pF

Note: 1. The voltage on I/O should remain between -0.3V and Vcc+0.3V during dynamic operation

Table 67. Smart Card RST, CC4, CC8, DC Parameters (Port P1.5, P1.3, P1.1)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL}	Output Low Voltage	0(1) 0(1)		0.12 x Vcc 0.4	V	I _{OL} = 20 μA I _{OL} = 50 μA
I _{OL}	Output Low Current			15	mA	
V _{OH}	Output High Voltage	Vcc - 0.5 0.8 x Vcc		Vcc Vcc (1)	V	I _{OH} = 50 μA I _{OH} = 20 μA
I _{OH}	Output High Current			15	mA	
t _R t _F	Rise and Fall delays			0.8	μs	C _{IN} =30pF
	Voltage Stability	-0.25 Vcc-0.5		0.4 x Vcc Vcc + 0.25		Low level High level

Note: 1. The voltage on RST should remain between -0.3V and Vcc+0.3V during dynamic operation

Table 68. Alternate Card RST DC Parameters (Port P3.7)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
V _{OL}	Output Low Voltage	0 (1)		0.2 x Vcc	V	Ι _{ΟL} =200 μΑ
V _{OH}	Output High Voltage	0.8 x Vcc 0.8 x Vcc		Vcc (1) Vcc	V	I _{OH} = -20 μA (1.8V) I _{OH} = +200 μA (3V)
t _R t _F	Rise and Fall delays			400	μs	C _{IN} =30pF
	Note: 1. The v	oltage on RST	should remain	between -0	.3V and V	cc+0.3V during dynamic

the voltage on RST should remain between -0.3V and Vcc+0.3V during dynamic operation

Table 69.	Card Presence	DC parameter	rs (P1.2)
	Oalu i icaciice	DO parameter	3 (1 1.2)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
I _{OL1}	CPRES weak pull-up output current	3	10	25	μΑ	P1.2=1, short to VSS

20. Typical Application

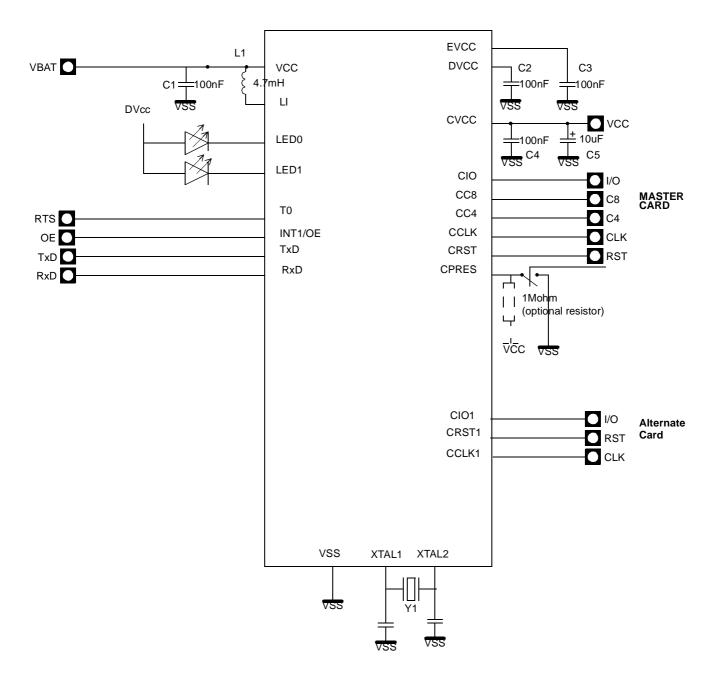


Figure 42. Typical Application Diagram

21. Ordering Information

Part-Number	Code Memory Size (bytes)	Supply Voltage	Temperature Range	Max Frequency	Package	Packing
T83C5121xxx-ICSIL	16K ROM	2.8 - 5.5V	Industrial	16 MHZ	SSOP24	Stick
T83C5121xxx-ICRIL	16K ROM	2.8 - 5.5V	Industrial	16 MHZ	SSOP24	Tape & Reel
T83C5121xxx-S3SIL	16K ROM	2.8 - 5.5V	Industrial	16 MHZ	PLCC52*	Stick
T83C5121xxx-S3RIL	16K ROM	2.8 - 5.5V	Industrial	16 MHZ	PLCC52*	Tape & Reel
T83C5121xxx-RLTIL	16K ROM	2.8 - 5.5V	Industrial	16 MHZ	VQFP44*	Tray
T83C5121xxx-RLRIL	16K ROM	2.8 - 5.5V	Industrial	16 MHZ	VQFP44*	Tape & Reel
T85C5121-ICSIL	16K RAM	2.8 - 5.5V	Industrial	16 MHZ	SSOP24	Stick
T85C5121-ICRIL	16K RAM	2.8 - 5.5V	Industrial	16 MHZ	SSOP24	Tape & Reel
T85C5121-S3SIL	16K RAM	2.8 - 5.5V	Industrial	16 MHZ	PLCC52*	Stick
T85C5121-S3RIL	16K RAM	2.8 - 5.5V	Industrial	16 MHZ	PLCC52*	Tape & Reel
T85C5121-RLTIL	16K RAM	2.8 - 5.5V	Industrial	16 MHZ	VQFP44*	Tray
T85C5121-RLRIL	16K RAM	2.8 - 5.5V	Industrial	16 MHZ	VQFP44*	Tape & Reel
T89C5121-ICSIL	16K Flash RAM	2.8 - 5.5V	Industrial	16 MHZ	SSOP24	Stick
T89C5121-ICRIL	16K Flash RAM	2.8 - 5.5V	Industrial	16 MHZ	SSOP24	Tape & Reel
T89C5121-S3SIL	16K Flash RAM	2.8 - 5.5V	Industrial	16 MHZ	PLCC52*	Stick
T89C5121-S3RIL	16K Flash RAM	2.8 - 5.5V	Industrial	16 MHZ	PLCC52*	Tape & Reel
T89C5121-RLTIL	16K Flash RAM	2.8 - 5.5V	Industrial	16 MHZ	VQFP44*	Tray
T89C5121-RLRIL	16K Flash RAM	2.8 - 5.5V	Industrial	16 MHZ	VQFP44*	Tape & Reel

Note: (*) Check availability.

Table of Contents

1. Features	1
2. Description	2
3. Block Diagram	2
4. Pin Description	3
4.1 Pinout	3
4.2 Signals	4
5. SFR Mapping	9
6. PowerMonitor	11
6.1 Overview	11
6.2 Description	11
6.3 PowerMonitor diagram	11
7. Power Monitoring and Clock Management	
7.1 Introduction	
7.2 Idle Mode	
7.3 Power-Down Mode	13
8. Clock Management	19
8.1 Overview	
8.2 Functional block diagram	
8.3 X2 Feature	19
8.4 Clock prescaler	
8.5 Clock control registers	
9. DC/DC CLOCK	23
9.1 Overview	
9.2 Clock control register	
9.3 Clock prescaler	
10. Smart Card Interface Block (SCIB)	
11. Interrupt System	
11.1 INT1 Interrupt Vector	
12. LED Ports Configuration	
12.1 Registers definition	
13. Dual Data Pointer	
14. Memory Management	
14.1 Program Memory	
14.2 In System Programming	
14.3 Protection Mechanisms	
14.4 Protection Mechanisms	
15. Timers/Counters	
15.1 Introduction	
15.2 Timer/Counter Operations	
15.3 Timer 0	
15.4 Timer 1	
15.5 Registers	
16. Serial I/O Port	
16.1 Framing Error Detection	
16.2 Automatic Address Recognition	
	51

T83C5121

T83C5121

16.3 UART Output Configuration	59
16.4 UART Control registers	59
17. UART Timings	60
17.1 Mode Selection	60
17.2 Baud Rate Generator	60
17.3 Asynchronous Modes (Modes 1, 2 and 3)	63
18. WatchDog Timer	70
18.1 WatchDog Timer during Power down mode and Idle	73
19. Electrical Characteristics	74
19.1 Absolute Maximum Ratings (1)	74
19.2 DC Parameters	74
20. Typical Application	81
21. Ordering Information	

Atmel Wireless & Microcontrollers Sales Offices

France

3, Avenue du Centre 78054 St.-Quentin-en-Yvelines Cedex France Tel: 33130 60 70 00 Fax: 33130 60 71 11

Germany

Erfurter Strasse 31 85386 Eching Germany Tel: 49893 19 70 0 Fax: 49893 19 46 21

Kruppstrasse 6 45128 Essen Germany Tel: 492 012 47 30 0 Fax: 492 012 47 30 47

Theresienstrasse 2 74072 Heilbronn Germany Tel: 4971 3167 36 36 Fax: 4971 3167 31 63

Italy

Via Grosio, 10/8 20151 Milano Italy Tel: 390238037-1 Fax: 390238037-234

Spain

Principe de Vergara, 112 28002 Madrid Spain Tel: 3491564 51 81 Fax: 3491562 75 14

Sweden

Kavallerivaegen 24, Rissne 17402 Sundbyberg Sweden Tel: 468587 48 800 Fax: 468587 48 850

United Kingdom

Easthampstead Road Bracknell, Berkshire RG12 1LX United Kingdom Tel: 441344707 300 Fax: 441344427 371

USA

2325 Orchard Parkway San Jose California 95131 USA-California Tel: 1408441 0311 Fax: 1408436 4200

1465 Route 31, 5th Floor Annandale New Jersey 08801 USA-New Jersey Tel: 1908848 5208 Fax: 1908848 5232

Hong Kong

77 Mody Rd., Tsimshatsui East, Rm.1219 East Kowloon Hong Kong Tel: 85223789 789 Fax: 85223755 733

Korea

Ste.605,Singsong Bldg. Youngdeungpo-ku 150-010 Seoul Korea Tel: 8227851136 Fax: 8227851137

Singapore

25 Tampines Street 92 Singapore 528877 Rep. of Singapore Tel: 65260 8223 Fax: 65787 9819

Taiwan

Wen Hwa 2 Road, Lin Kou Hsiang 244 Taipei Hsien 244 Taiwan, R.O.C. Tel: 88622609 5581 Fax: 88622600 2735

Japan

1-24-8 Shinkawa, Chuo-Ku 104-0033 Tokyo Japan Tel: 8133523 3551 Fax: 8133523 7581

Web site http://www.atmel-wm.com

© Atmel Nantes SA, 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

