

Product Brief

KM7101

Ultra-Low Cost, 136μA, +2.7V, 4.9MHz Rail-to-Rail I/O Amplifier

Features at 2.7V

- 136µA supply current
- 4.9MHz bandwidth
- Output swings to within 20mV of either rail
- Input voltage range exceeds the rail by >250mV
- 5.3V/µs slew rate
- 35mA short circuit output current
- 24nV/√Hz input voltage noise
- Directly replaces LMC7101 in single supply applications
- Available in SOT23-5 package

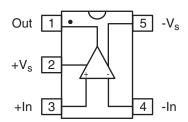
Applications

- Portable/battery-powered applications
- PCMCIA, USB
- Mobile communications, cellular phones, pagers
- Notebooks and PDA's
- Sensor Interface
- A/D buffer
- Active filters
- Signal conditioning
- Portable test instruments

General Description

The KM7101 is an ultra-low cost, low power, voltage feedback amplifier that is pin compatible to the LMC7101. If a standard pinout is required, use the KM4170. The KM7101 uses only $136\mu A$ of supply current and offers no crossover distortion. The input voltage range exceeds the negative and positive rails.

The KM7101 offers high bipolar performance at a low CMOS price. The KM7101 offers superior dynamic performance with a 4.9MHz small signal bandwidth and 5.3V/µs slew rate. The combination of low power, high bandwidth, and rail-to-rail performance make the KM7101 well suited for battery-powered communication/computing systems.


Outperforms the competition in single-supply applications at a

lower cost!

Advertised Specifications	KM7101	Competitor A	Units
G = 1 BW	4.9	1	MHz
Noise	24	37	nV/√Hz
Slew rate	5.3	0.7	V/µs
Supply current	136	500	μΑ

Available Package

SOT23-5

Ordering Information

Part No.	Package	Container	Pack Qty	Eval Bd*
KM7101IT5	SOT23-5	Partial Reel	<3000	KEB008
KM7101IT5TR3	SOT23-5	Reel	3000	KEB008

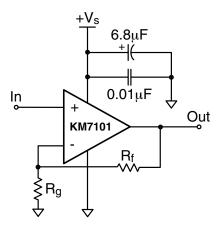
Temperature range for all parts: -40°C to +85°C.

^{*} Evaluation boards are available to aid in the evaluation of these products. See the full data sheet or website for complete information.

Electrical Characteristics

(G = +2, R_f = 5k Ω , R_L = 10k Ω to $V_s/2$, T_a = +25°C, unless noted)

PARAMETERS	CONDITIONS	TYP	TYP	UNITS
		V _S = +2.7V	$V_s = +5V$	
Frequency Domain Response ² -3dB bandwidth	$G = +1, V_o = 0.02V_{pp}$	4.9	4.3	MHz
full power bandwidth gain bandwidth product	$G = +1$, $V_o = 0.02V_{pp}$ $G = +2$, $V_o = 0.2V_{pp}$ $G = +2$, $V_o = 2V_{pp}$	3.7 1.4 2.2	3.0 2.3 2.0	MHz MHz MHz
Time Domain Response rise and fall time overshoot slew rate	1V step 1V step 1V step	163 <1 5.3	110 <1 9	ns % V/μs
Distortion and Noise Response 2nd harmonic distortion ¹ 3rd harmonic distortion ¹ THD ¹ input voltage noise	1V _{pp} , 10KHz 1V _{pp} , 10KHz 1V _{pp} , 10KHz >100KHz	-75 -76 0.03 24	-73 -75 0.03 27	dBc dBc % nV/Hz
DC Performance input offset voltage average drift input bias current average drift power supply rejection ratio open loop gain quiescent current	DC	0.5 5 90 32 83 90 136	1.5 15 90 40 60 80 160	mV μV/°C nA pA/°C dB dB μA
Input Characteristics input resistance input capacitance input common mode voltage ra common mode rejection ratio	nge DC	12 2 -0.25 to 2.95 81	12 2 -0.25 to 5.25 85	MΩ pF V dBc
Output Characteristics output voltage swing	$R_L = 10k\Omega$ to $V_s/2$ $R_L = 1k\Omega$ to $V_s/2$ $R_L = 200\Omega$ to $V_s/2$	0.020 to 2.68 0.05 to 2.63 0.11 to 2.52	0.07 to 4.9 0.14 to 4.67	V V V
output current short circuit output current recommended power supply op	erating range	16 35 2.5 to	30 60 5.5	mA mA V


Notes: 1) For +5V supply, a 2V_{pp} condition was used.

2) For G = +1, $R_f = 0$.

Absolute Maximum Ratings

supply voltage	0 to +6V
maximum junction temperature	+175°C
storage temperature range	-65°C to +150°C
lead temperature (10 sec)	+300°C
operating temperature range	-40° to +85°C
input voltage range	+V _s + 0.5V, -V _s - 0.5V
θ_{ja} for 5 lead SOT23	256°C/W

Typical Circuit Configuration

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.