

3.3V CMOS 18-BIT UNIVER-SAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCHR16500

FEATURES:

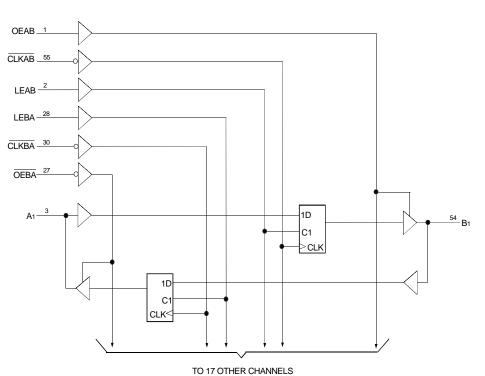
- 0.5 MICRON CMOS Technology
- Typical tsκ(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP, and 0.40mm pitch TVSOP packages
- Extended commercial range of 40°C to + 85°C
- $Vcc = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ± 0.2V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin

Drive Features for ALVCHR16500:

- Balanced Output Drivers: ±12mA
- Low switching noise

APPLICATIONS:

- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

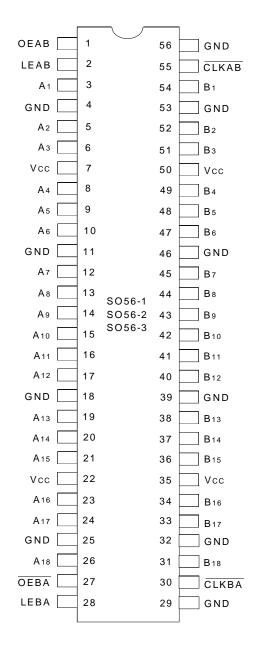

Functional Block Diagram

DESCRIPTION:

This 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. <u>Data</u> flow in each direction is controlled by output-enable (OEAB and OEBA), latch enable (LEAB and LEBA) and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is high. When LEAB is LOW, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is LOW, the A data is stored in the latch/flip-flop on the high-to-low transition of CLKAB. OEAB performs the output enable function on the B port. Data flow from B port to A port is similiar but requires using OEBA, LEBA and CLKBA. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The ALVCHR16500 has series resistors in the device output structure which will significantly reduce reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

The ALVCHR16500 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.



1

EXTENDED COMMERCIAL TEMPERATURE RANGE

JULY 1999

PIN CONFIGURATION

SSOP/ TSSOP/TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage	– 0.5 to + 4.6	V
	with Respect to GND		
VTERM ⁽³⁾	Terminal Voltage	– 0.5 to	V
	with Respect to GND	Vcc + 0.5	
Tstg	Storage Temperature	– 65 to + 150	°C
Ιουτ	DC Output Current	– 50 to + 50	mA
Ік	Continuous Clamp Current,	± 50	mA
	VI < 0 or $VI > VCC$		
Іок	Continuous Clamp Current, Vo < 0	- 50	mA
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
NOTEO		•	NEW16link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	7	pF
Соит	Output Capacitance	Vout = 0V	7	9	pF
Ci/o	I/O Port	Vin = 0V	7	9	pF
	Capacitance				NEW16link

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (1, 2)

	Inp		Outputs	
OEAB	LEAB	CLKAB	Ах	Вх
L	Х	Х	Х	Z
Н	Н	Х	L	L
Н	Н	Х	Н	Н
Н	L	\downarrow	L	L
Н	L	\downarrow	Н	Н
Н	L	Н	Х	Bo ⁽³⁾ Bo ⁽⁴⁾
Н	L	L	Х	Bo ⁽⁴⁾

NOTES:

 A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, and CLKBA

2. H = HIGH Voltage Level

- L = LOW Voltage Level
- X = Don't Care
- Z = High-Impedance
- \downarrow = HIGH-to-LOW Transition
- Output level before the indicated steady-state input conditions were established
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was low before LEAB went low.

PIN DESCRIPTION

Pin Names	Description	
OEAB	A-to-B Output Enable Input	
OEBA	B-to-A Output Enable Input (Active LOW)	
LEAB	A-to-B Latch Enable Input	
LEBA	B-to-A Latch Enable Input	
CLKAB	A-to-B Clock Input (Active LOW)	
CLKBA	B-to-A Clock Input (Active LOW)	
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾	
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾	

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	Test Conditions		Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		—		0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	—	_	± 5	μA
lı∟	Input LOW Current	Vcc = 3.6V	VI = GND	—	_	± 5	
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	—	_	± 10	μA
Iozl	(3-State Output pins)		Vo = GND	_	_	± 10	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA		—	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		—	100		m\
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = 3.6V VIN = GND or Vcc		_	0.1	40	μA
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc – 0.6V, other inputs at Vcc or GND		-	_	750	μA

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions		Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_		μA
Ibhl			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	- 45	_	_	μA
IBHL			VI = 0.7V	45	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Ibhlo							
							NEW16lin

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Max.	Uni
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	Iон = – 4mA	1.9	_	
			Iон = – 6mA	1.7	_	
		Vcc = 2.7V	Iон = – 4mA	2.2	_	
			Iон = - 8mA	2	_	
		Vcc = 3.0V	Iон = – 6mA	2.4	_	
			Iон = - 12mA	2	_	
/ol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	-	0.2	V
		Vcc = 2.3V	IOL = 4mA	_	0.4	
			IOL = 6mA	—	0.55	
		Vcc = 2.7V	IoL = 4mA	-	0.4	
		Iol = 8mA	—	0.6		
	Vcc = 3.0V	IOL = 6mA	—	0.55		
			Iol = 12mA	_	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate VCC range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

			$Vcc = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance	CL = 0pF, f = 10Mhz	_	_	pF
	Outputs enabled				рг
Cpd	Power Dissipation Capacitance		-	_	»Г
	Outputs disabled				pF

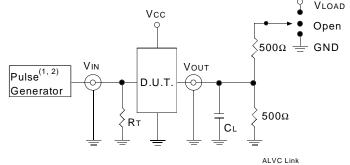
SWITCHING CHARACTERISTICS (1)

			Vcc = 2.5	5V ± 0.2V	Vcc :	= 2.7V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Unit
fmax			150	_	150	_	150	_	MHz
t PLH	Propagation Delay		1	6.2	_	5.4	_	4.5	ns
t PHL	Ax to Bx or Bx to Ax								
t PLH	Propagation Delay		1	7	_	6.2	1	5.3	ns
t PHL	LEBA to Ax or LEAB to Bx								
t PLH	Propagation Delay		1	7.7	-	7.3	1.1	6.1	ns
t PHL	CLKBA to Ax or CLKAB to Bx								
t PZH	Output Enable Time		1	7.2	—	6.9	1	5.8	ns
tPZL	OEBA to Ax								
tрzн	Output Enable Time		1	6.7	—	6.1	1	5.2	ns
tpzl	OEAB to Bx								
tрнz	Output Disable Time		1	6.1	—	5.1	1	4.8	ns
t PLZ	OEBA to Ax								
tрнz	Output Disable Time		1.7	6.8	—	6.2	1.5	5.5	ns
t PLZ	OEAB to Bx								
tsu	Setup Time, data before $\overline{CLK} \downarrow$		1.7	_	1.4	_	1.3	_	ns
tн	Hold Time, data after $\overline{CLK} \downarrow$		1.7	—	1.6	-	1.3	—	ns
tsu	Setup Time, data before $\overline{LE} \downarrow$	CLK LOW	1.9	_	1.6	-	1.4	_	ns
		CLK HIGH	1.1	_	1	_	1	_	ns
tн	Hold Time, data after $\overline{\text{LE}}\downarrow$	CLK LOW	1.6	_	1.5	_	1.2	_	ns
		CLK HIGH	2	_	1.8	_	1.5	_	ns
tw	Pulse Width, LE HIGH		3.3	_	3.3	_	3.3	_	ns
tw	Pulse Width, CLK HIGH or LOW		3.3	_	3.3	_	3.3	—	ns
tsк(o)	Output Skew ⁽²⁾		_	_	_	_		500	ps

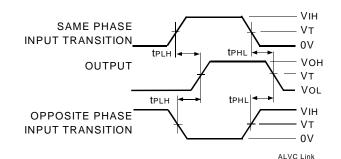
NOTES:

1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

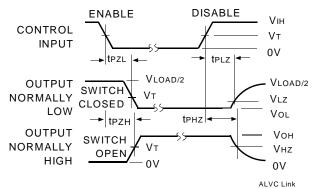
2. Skew between any two outputs of the same package and switching in the same direction.

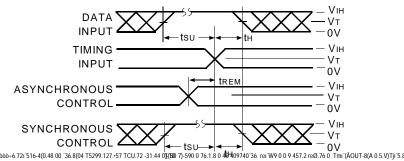

IDT74ALVCHR16500 3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER W/3-STATE OUTPUTS

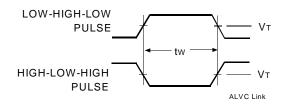
TEST CIRCUITS AND WAVEFORMS:


TEST CONDITIONS

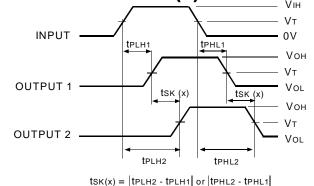
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ = 2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
Cl	50	50	30	рF
				NEW16link


TEST CIRCUITS FOR ALL OUTPUTS


| PROPAGATION DELAY


ENABLE AND DISABLE TIMES

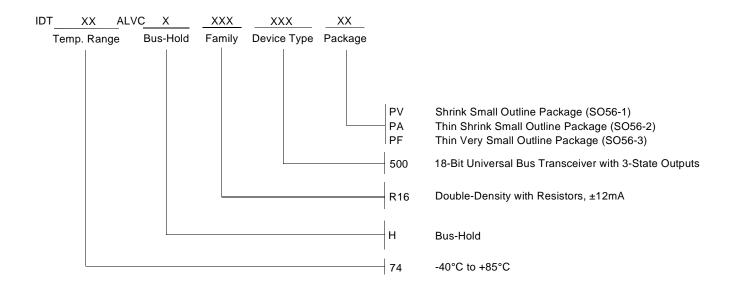
SET-UP, HOLD, AND RELEASE TIMES


ALVC Link

SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	NEW16link7

OUTPUT SKEW - тsk (x)


NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

ALVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.